
Learning Decision Trees for Action Selection
in Soccer Agents

Savas Konur 1 and Alexander Ferrein and Gerhard Lakemeyer 2
Abstract.

In highly-dynamic domains such as robotic soccer it is important
for agents to take action rapidly, often in the order of a fraction of
a second. This requires, a possible longer-term planning component
notwithstanding, some form of reactive action selection mechanism.
In this paper we report on results employing decision-tree learning to
provide a ball-possessing soccer agent in the SIMULATION LEAGUE

with such a mechanism. The approach has payed off in at least two
ways. For one, the resulting decision tree applies to a much larger set
of game situations than those previously reported and performs well
in practice. For another, the learning method yielded a set of quali-
tative features to classify game situations, which are useful beyond
reactive decision making.

1 Introduction

In highly-dynamic domains like robotic soccer it is important for
agents to take action rapidly, often in the order of a fraction of a
second. This is especially true in the application domain considered
in this paper, the ROBOCUP SIMULATION LEAGUE with 11 players
per team on a 2D playing field. Such tight time constraints require,
a possible longer-term planning component notwithstanding, some
form of reactive action selection mechanism. Byreactivewe mean,
roughly, that decisions are made solely on the basis of a description
of the current situation or world model. In particular, thisprecludes
any evaluation of different possible courses of actions as in planning.

When presented with a game situation in the SIMULATION

LEAGUE, humans are usually quite capable of choosing a reason-
able action for, say, the ball-possessing agent. However, it is not at
all easy to encode this “expert” knowledge in a way suitable for an
artificial soccer agent for at least two reasons:

1. It is not clear what the salient features of a game situation are,
which determine the action to be chosen. Presumably, these fea-
tures would include qualitative descriptions such as the team
member or opponent closest to the ball. But what the relevant
ones?

2. Even if we were given those features, it is not clear how to trans-
late them into rules for decision making. We could try to hand-
code them, but this approach is likely error-prone, not to mention
the difficulty of eliciting the rules from the human expert.

Perhaps the best way to overcome these problems is to use
machine-learning techniques. Deciding what action to takenext in1 Free University of Amsterdam Artificial Intelligence Department, Amster-

dam, The Netherlands, skonur@cs.vu.nl,2 RWTH Aachen, Knowledge-Based Systems Group, Aachen, Germany,fferrein,gerhardg@cs.rwth-aachen.de

robotic soccer can be thought of as a classification problem,where
a game situation is classified according to the best next action.
Machine-learning techniques suitable for classification are decision-
tree learning such asID3 [9] or C4:5 [10]), neural networks [14, 21]
and reinforcement learning [17, 21, 19].

For our work we have chosen decision-tree learning, in particular,C4:5, as it is capable to deal well with both issues raised above. For
one, given a sufficiently large set of training examples, thesystem au-
tomatically builds a decision tree, which encodes the rulesfor action
selection. Compared to other techniques like neural networks, deci-
sion trees also have the well-known benefit that they can be inspected
and understood by humans. For another, it is not necessary todecide
beforehand what the relevant features are for classification. All that
is needed is that the system is given a sufficiently large set.The rel-
evant features are produced as a side-effect of building thedecision
tree in the sense that only those features or attributes thateventually
appear as nodes in the decision tree are thought of as relevant.

We remark that we applied learning to all types of players (ex-
cept the goalie) anywhere on the field, but we restricted ourselves to
players in ball possession.

We believe that our results are noteworthy for at least the fol-
lowing reasons. For one, the resulting decision tree coversa much
wider range of game situations and actions than in previous work
such as [7, 20]. For another, as we will see in the discussion of ex-
perimental results, a team using this decision tree, but which is oth-
erwise not optimized at all, performs surprisingly well. Finally, as
already noted above, while decision-tree learning by itself does not
come up with qualitative world descriptions, it is nevertheless useful
in pruning irrelevant attributes from a given set.

This rest of the paper is organized as follows. In Section 2 we
briefly discuss existing learning methods applied to robotic soccer.
In Section 3, we describe our approach to decision-theoretic learning
of action selection for a soccer agent in the SIMULATION LEAGUE,
followed by a discussion of experimental results in Section4. The
paper ends with a brief summary and concluding remarks.

2 Related Work

In this section we present some of the work on applying machine
learning techniques to robotic soccer and action selection. One focus
is learning of basic agent skills such asdribbling, passing,andinter-
cepting.[13], for example, use reinforcement learning for this pur-
pose. In [15, 20] a form of so-calledLayered Learningis proposed.
It provides a bottom-up hierarchical approach to learning agent be-
haviors. In this framework, the learning at each level is directly used
in the learning at the next higher level. The bottom layer considers
low-level individual agent skills such asball interceptionor drib-



bling. In contrast to [13], the behaviors are learned using a neuralnet-
work. At higher levels, action selection of the ball-possessing agent
is learned using multi-agent reinforcement learning. We remark that
the authors consider only eight kicking actions, which is much more
limited than in our case. (A comparison of multi-agent reinforce-
ment learning methods in the soccer domain can be found in [18].)
In earlier work, Matsubara et al. [7] considered action selection us-
ing neural networks. There the scope was even more limited, as they
restrict themselves to the decision of whether to shoot directly to the
goal or to pass to a better positioned player. Decision-treelearning
has been applied in robotic soccer as well. For example, Visser and
Weland [22] recently appliedC4:5 to learning aspects of the strategy
of the opposing team in the SIMULATION LEAGUE.

Outside of the soccer domain, action selection for robots isoften
addressed using reinforcement learning. For example, [11]proposes
hierarchical Q-learning for action selection, where the control task of
a robot is divided into a set of simpler problems each learnedsepa-
rately. Another reinforcement learning approach to the action selec-
tion problem was proposed by Humphrys [8]. Each behavior module
proposes an action with a certain weight of which the action with the
highest weight is executed. The weights of the actions are modified
based on the difference between the weight of the action being ex-
ecuted and the action a behavior module proposed using a formof
reinforcement learning. The application domain presentedin [8] is a
simulated environment of a house keeping robot.

3 Learning the Decision Tree

In this section we present how we appliedC4:5 to our SIMULATION

LEAGUE agent. We start with an overview of the categories which
should be learned, i.e. the action which the agent should perform. In
Section 3.2, we present the attributes which turned out to beappropri-
ate for the SIMULATION LEAGUEbefore we show how we instructed
the agent in Section 3.3. The consulting procedure in on-line games
is represented in Section 3.4.

3.1 Skill Hierarchy and Meta-Level Actions

As C4:5 cannot deal with parameterized categories to be learned
[10], we implemented special behaviors which are to be selected by
the decision tree. Figure 1 gives an overview of the skill hierarchy
we use in our reactive soccer agent. The low-level action layer com-
prises basic actions likedashing to a position, accelerating the ball
to a certain velocity, or freezing the ball. Those commands are trans-
lated into the SOCCERSERVERcommands, such asdash, kick, turn,
etc. The intermediate action layer defines actions likemoving to a
position, or kicking the ball to a certain point, which are based on
the low-level action layer. High-level actions use the intermediate
actions for the desired behavior.dribbling andpassing the ball to a
teammateare two examples of high-level actions taken from [1].C4:5 requires that output values (categories) of decision treesmust
be discrete and specified in advance. This means action categories
which we use in the learning process should not take any argument in
order to satisfy theC4:5 requirements. Therefore, we cannot directly
use the high-level actions in the learning process since they require
some arguments in order to be executed. For that reason, we need
new actions which should have the form of a argument-free discrete
category. In order to accomplish this purpose we have introduced
the meta-level actions which use the high-level actions to generate
the desired behavior. These skills are parameterless encapsulations
of skills from the other layers suitable to deal as a categoryfor C4:5.

Figure 1. Skill hierarchy

The meta-level actions calculate necessary arguments before calling
the corresponding high-level actions. In our current implementation,
we have defined 15 meta-level actions (see below). An examplefor
such an action is the dribble action depicted in Fig. 2. Some decisions
like with which angle and speed the agent should dribble are made.
For the supervision process it is very important that the supervisor
has the semantics of the respective meta-level action in mind in or-
der to give the right advice. The high-level dribble action in turn is
responsible for correctly determining when to kick and intercept the
ball in order to move player and the ball to the demanded position on
the field.dribble()

if ball is not in kickable marginthen
return interept ()

else
if path toward opponent goal is freethenang direction to opponent goaltype DRIBBLE FAST
else if path toward goal is fairly freethenang direction to opponent goaltype DRIBBLE SLOW
elseang getDiretionOfWidestAngle()

if ang = wide thentype DRIBBLE FAST
elsetype DRIBBLE SLOW
end if

end if
end if
return dribble(ang; type)
Figure 2. The dribble action which is executed by the decision tree

In the following, we give an overview of the categories (meta-level
actions) which were used.� Outplay OpponentThe ball is played into the opponent’s back

followed by an intercept action.� Dribble calculates the angle relative to the agent where it should
dribble to. A second argument is the speed with which the agent
should dribble. Two different speeds are distinguished: slow and
fast.



� Direct Passcomprises several actions. It is distinguished between
direct passes of an attacker and between a defensive player and
a midfielder. Moreover, there exists a pass action for back passes
and passes in front of the player. We have to split the direct pass
action because the different aspects (playing a pass to a player in
front or to the back) does not fit in one pass action model.C4:5
is not able to determine the differences in the semantics only by
looking at the attributes. Each different instance of a direct pass
share the calculation of the “least congested team-mate”. Heuris-
tically, this team-mate is chosen. The heuristics is based on the
number of opponents in a certain distance around the player,there
exists a free pass-way to that respective player, and some more.� A Through Passis a pass which is played behind the opponent
defense. A free space behind the defensive line is found where a
team-mate is able to receive.� A Leading Passis a pass in the run-way of the respective team-
mate. It is calculated if a team-mate can intercept the ball after the
pass in a certain amount of time.� TheShoot at Goalaction calculates a point on the opponent goal
line with maximum distance to the opponent goal keeper.� With Clear Ball the player simply kicks the ball as far away as
possible. For instance, if a defender is not able to dribble or pass
the ball to a team-mate it seem reasonable to bring the ball asfar
away from the own goal as possible.� Turn to Opponent GoalWhen the agent is in ball possession and
cannot see the opponent goal in order to perceive the opponent’s
goal keeper position, this action enables the agent to turn towards
the goal without leaving the ball.

3.2 Constructing the Attribute Set

In order to generate a good classification by theC4:5 algorithm
choosing an appropriate attribute set is a crucial task. Having irrel-
evant attributes in the attribute set is the main reason foroverfitting
[9, 10]. Another difficulty for finding an appropriate set lies in the
nature of the soccer domain. As there are different player types and
situations during a game where each player has to react in different
ways according to its type and location on the field, we have toac-
count for this by dividing the field into different regions. One such
possible division is depicted in Figure 3 which was proposedin [1].
One approach to the problem could have been to learn different trees
for different player types, such asattacker, midfielder, defender, by
constructing the test sets with only the relevant information. How-
ever, this approach raises several problems: (1) it is not trivial to rec-
ognize all relevant regions; statically dividing the field into defense,
midfield and attack is not sufficient because also a defender might
sometimes be located in a midfield region, (2) a separate construction
of the training set for each region and player type is a tedious task
and available data from the LOGPLAYER3 consists of whole game
information, (3) different decision trees for each player type accord-
ing to the game situations demand a selection mechanism thattells
which tree should be consulted; this would take the same problem to
a higher level.

Therefore, we decided to use only one decision tree containing
the distinguishing features like player types and playing region as
attributes. We also restrict the consulting of the decisiontree to game
situations where players are in ball possession.

From the considerations above and from many experiments we
arrived at 35 attributes, which can be summarized as follows:3 The LOGPLAYER is a tool coming with the SIMULATION LEAGUE simula-

tion server to replay recorded games.

Figure 3. Possible regions a player can be in.� Type of playeris a discrete attribute and distinguishes between
defender, midfielder, and attacker.� Playing regionis a discrete attribute representing in which region
the player is located. The different regions are depicted inFigure
3.� Closest teammate to ballis a boolean attribute denoting if the
player is the closest player to the ball.� Distance and angle to ball, goals and opponent goal keeperare
continuous attributes determining the agent’s distance and angle to
the ball, the own as well as the opponent goal, and to the opponent
goal keeper.� Distances and angles to the visible teammates and opponentsare
a number of attributes denoting the visible teammates and oppo-
nents of an agent.� Closest team to the ballis a boolean attribute which is true if one
player of our team is the closest player to the ball and false other-
wise.� Ball possessing teamtakes three values corresponding to whether
the ball is in kickable range for our team, for the opponent team,
or for none.� Ball distances and angles to both goalsare continuous attributes
representing the distances and angles of the ball to both of the
goals.� Opponent goalie’s distances and angles to its goal postsis a num-
ber of attributes representing the the distance and angle ofthe op-
ponent goalie to the opponent goal posts.

The reader should note that it was the decision-tree learning algo-
rithm that ultimately decided that these are the relevant attributes of a
game situation for a player in ball possession, as only theseattributes
were used in the decision tree. For example, it turns out thatonly
thefivenearest players to the ball are ever considered relevant. One
possible explanation for this are the restrictions due to two dimen-
sions of the current SIMULATION LEAGUE, where passes across the
opponent defense are impossible. Other attributes which were used
during tests were not contained in the resulting tree and therefore
deemed irrelevant.

We also remark that the choice of attributes may likely be different
for players other than the one in ball possession. For example, one
would not expect the goalie to care much about the distance tothe
opponent’s goal.

The reader should note that many of the above attributes havea
continuous domain. We make use ofC4:5’s ability to discretize con-
tinuous attributes given the training set. This discretization some-
times results in wrong classifications during the consulting phase,
as hard bounds on the attributes are drawn. Nevertheless these errors
seem acceptable in practice.



...
MyPlayerType = 2:
| BallDistanceToOpponentGoal <= 18.2609 :
| | MyCurrentPlayingRegion = 4: 9 (6.0/1.2)
| | MyCurrentPlayingRegion = 5:
| | | MyDistanceToOpponentGoal <= 12.4953 :
| | | | MyDistanceToOurGoal <= 92.6233 : 1 (3.0/2.1)
| | | | MyDistanceToOurGoal > 92.6233 :
| | | | | MyDistanceToOpponentGoalie > 18.5529 : 9 (3.0/2.1)
| | | | | MyDistanceToOpponentGoalie <= 18.5529 :
| | | | | | OpponentGoalieGoalRightCornerAngle <= 47.7002 : 11 (40.0/2.6)
| | | | | | OpponentGoalieGoalRightCornerAngle > 47.7002 :
| | | | | | | MyAngleToBall <= 26.746 : 11 (4.0/1.2)
| | | | | | | MyAngleToBall > 26.746 : 10 (2.0/1.0)
| | | MyDistanceToOpponentGoal > 12.4953 :
| | | | MyDistanceToOpponentGoalie <= 6.47349 :
| | | | | OpponentGoalieGoalRightCornerDistance > 16.9349 : 9 (5.0/2.3)
| | | | | OpponentGoalieGoalRightCornerDistance <= 16.9349 :
| | | | | | MyDistanceToSecondVisibleOpponent <= 5.27978 : 4 (3.0/1.1)
| | | | | | MyDistanceToSecondVisibleOpponent > 5.27978 : 11 (11.0/2.5)
| | | | MyDistanceToOpponentGoalie > 6.47349 :
| | | | | MyAngleToOpponentGoal <= -103.167 : 10 (3.0/1.1)
| | | | | MyAngleToOpponentGoal > -103.167 :
| | | | | | MyDistanceToThirdVisibleOpponent <= 8.71111 :
| | | | | | | MyDistanceToOpponentGoal <= 14.6303 : 9 (2.0/1.0)
| | | | | | | MyDistanceToOpponentGoal > 14.6303 :
| | | | | | | | MyAngleToFirstVisibleTeammate > 53.8028 : 8 (5.0/2.3)
| | | | | | | | MyAngleToFirstVisibleTeammate <= 53.8028 :[S7]
| | | | | | MyDistanceToThirdVisibleOpponent > 8.71111 :
| | | | | | | ClosestTeamToBall = 0: 1 (0.0)
| | | | | | | ClosestTeamToBall = 2: 11 (2.0/1.0)
| | | | | | | ClosestTeamToBall = 1:
| | | | | | | | MyDistanceToOurGoal > 95.9754 : 9 (5.0/2.3)
| | | | | | | | MyDistanceToOurGoal <= 95.9754 :
| | | | | | | | | MyDistanceToThirdVisibleTeammate <= 14.797 :[S8]
| | | | | | | | | MyDistanceToThirdVisibleTeammate > 14.797 :[S9]
| BallDistanceToOpponentGoal > 18.2609 :
| | MyAngleToOpponentGoal <= 98.1456 :
| | | MyAngleToOpponentGoal <= -89.512 :
| | | | MyDistanceToFirstVisibleOpponent <= 1.87341 : 8 (21.0/2.5)
| | | | MyDistanceToFirstVisibleOpponent > 1.87341 :
| | | | | MyAngleToOpponentGoal <= -118.357 :
| | | | | | OpponentGoalieGoalRightCornerAngle <= 12.9107 : 10 (53.0/3.8)
| | | | | | OpponentGoalieGoalRightCornerAngle > 12.9107 : 8 (3.0/1.1)
| | | | | MyAngleToOpponentGoal > -118.357 :
| | | | | | MyAngleToFirstVisibleTeammate <= -113.017 : 4 (7.0/2.4)
| | | | | | MyAngleToFirstVisibleTeammate > -113.017 :
| | | | | | | MyDistanceToThirdVisibleTeammate <= 13.8264 :
| | | | | | | | MyDistanceToThirdVisibleOpponent <= 14.2218 : 8 (9.0/2.4)
| | | | | | | | MyDistanceToThirdVisibleOpponent > 14.2218 : 1 (4.0/2.2)
| | | | | | | MyDistanceToThirdVisibleTeammate > 13.8264 :
| | | | | | | | MyDistanceToOurGoal <= 74.9802 : 10 (15.0/4.7)
| | | | | | | | MyDistanceToOurGoal > 74.9802 : 4 (2.0/1.8)
| | | MyAngleToOpponentGoal > -89.512 :
| | | | BallAngleToOpponentGoal <= 32.6327 :
| | | | | ClosestTeamToBall = 0: 1 (0.0)
...

Figure 4. Excerpt from the resulting decision tree.



3.3 Gathering the Training Data

For the supervision process we extended the LOGPLAYER to be able
to associate the actions described in Section 3.1 to players. This
supervisor monitorgenerates the training examples by storing the
output category (actions) together with the input categories (world
model information).

It is important to note that while calculating the attributevalues we
cannot use the global information from the LOGPLAYERdirectly. In-
stead, we must calculate the supervised agent’s relative world model
from the global information and derive the attribute valuesfrom
it. This is important because while the agent consults the decision
tree in on-line games, the world model information comes from the
SOCCERSERVER,which supplies the agent with relative information
about the world model. Therefore, in the supervision process by cal-
culating the relative information from global view, it is guaranteed
that our training and test data are almost from the same distribution.

Another important point to be noted is that the supervisor should
have a good idea of how soccer is played in order to give adviceto the
agent. For humans it is easier to classify a given situation including
qualitative measures and give advices of what to do than to formalize
a good action selection scheme. In the supervision process,the idea
to specify the action classification of a play situation was that a player
should select the most suitable action which provides him with the
best advantage among alternatives actions. In this case, wecan say
that each action has a priority which depends on the player type and
the region the agent plays in. Below is some part of the schemethat
we used in the supervision process while advising the agents:

if scoring prob. is very high then
goalshot

else if agent in defensive region close to our goal then
if no opponent close and agent faces our goal then

turn to opponent goal
else if there is a very free teammate ahead then

pass ball directly to this teammate
else if trajectory to opponent goal is fairly free then

dribble forward
else

clear ball
endif: : :

else if agent in wings close to opponent goalie then: : :
One might ask why we simply did not implement the above

scheme instead of using a learned decision tree. As motivated in
the introduction human beings are good in classifying the world into
qualitative categories but encoding this as agent control software is
much harder. As one can see from the scheme it uses qualitative state-
ments like “very” or “fairly”. When supervising “fairly” isevaluated
by the supervisor in the complex situation the agent is in. Onthe
other hand, by having a qualitative world model it would be inter-
esting to compare an agent using the supervision scheme as action
selection with the decision tree learned byC4:5.

Naturally, the supervisor makes mistakes in the classification or
decides on the border line, giving contradictory advices. But asC4:5
is very robust against such mistakes they do not matter that much as
they would in a hand-coded variant of the scheme.

3.4 Consulting the Decision Tree

In the previous sections, we considered how the attribute and data
sets are gathered through the supervision process (thetraining
phase). After the training phase themodel generation phasestarts in
which these input files are passed through theC4:5 system, and the
decision tree model is produced by executing theC4:5 program. That
is, at the end of these phases we have acquired a model which can be
used by an agent to classify unseen cases. In the ROBOCUP context,
classification means offering a convenient action to the agent as it is
playing an on-line game in the SOCCERSERVER. This task is done
in a different process which we call theconsult phasein which an
agent consults the resulting decision tree to select an action in a play
situation. An agent consults the decision tree model when the ball is
kickable for him. In this case, a new process is started in which the
attribute values are calculated according to the world situation. Based
on these values the decision tree offers an action category which will
be performed by the agent in this particular world situation, and the
consult process halts for this time instance. Whenever the agent is in
the ball-kickable margin, this process is started again. This process
repeats until the game finishes. The hierarchical relationship between
these phases is shown in Figure 5.

Figure 5. Overview of processing theReactive Componentfor our soccer
agents

Figure 4 shows parts of the resulting decision tree for a midfield
player. Attributes are the nodes in this tree, e.g.MyPlayerTypeor
BallDistanceToOpponent Goal. The leaves of the tree can be identi-
fied by numbers which correspond to a respective meta-level action,
e.g. action 1 stands fordribble, 4 represents athrough pass, and 11
meansshoot to goal. The pair which follows an action shows the
number of training instances and the number of misclassifications.
The numbers in square brackets represent another subtree which is
not shown here for readability.

4 Empirical Results

For assessing the quality of the learned decision tree we conducted
several experiments.

The first question of interest was the accuracy of our training data.
In total, we collected 3000 training examples and grouped them in
training sets in steps of 500 examples up to the largest set contain-
ing the whole number of training examples (see Table 1). For each set
size we built several instances choosing randomly from the whole set
of training data. Table 2 shows the classification error rates. The col-
umnTree sizereflects the number of nodes the tree contains. Based
on this table we can make the following observations:



First, the results show a (slightly) decreasing error rate with an
increasing number of examples. The fact that we are left withan er-
ror rate of almost 9 % even before pruning has at least two reasons.
One reason is that the supervisor makes mistakes giving contradic-
tory examples. The other is that we use a large number of contin-
uous attributes. For a continuous attribute,C4:5 finds a split value
which maximizes information gain for the respective attribute. This
discretization leads to misclassifications.

Second, in each category, we see the error rate of the pruned tree is
higher than that of the original tree. Actually, this resultis expected
since in the pruning process some branches of the tree are replaced
by a leaf node, yielding misclassification of some of the examples
which were previously classified correctly.

Finally, it should be noted that the size of the trees gradually in-
creases as the size of training data gets bigger, since C4.5 adds new
branches to the decision trees in order to correctly classify the data
instances.

Category 1 2 3 4 5 6
Set Size 500 1000 1500 2000 2500 3000

Table 1. Sizes of the test sets.

Cat. Before Pruning After Pruning
Tree size Error(%) Tree size Error

1 174 8.40 144 9.74
2 353 7.82 296 9.40
3 493 8.76 422 9.94
4 672 8.60 588 9.75
5 846 8.20 722 9.50
6 979 8.02 847 9.30

Table 2. Error rates for the training set.

The next interesting question was how good the decision treeclas-
sifies unseen examples. We therefore played a large number ofgames
against several teams with a different tree for each category from our
training set (For each category we collected 1500 test examples). For
assessing “ground truth” we classified for each logged game the sit-
uations according to the supervision scheme we presented inSection
3.3. The results over the training games are presented in Table 3 and
Figure 6

Category 1 2 3 4 5 6
Classification Ratio (%) 35.1 46.3 59.8 64.1 66.8 66.5

Table 3. Results of training games.

By looking at the table and figure we can see that there is a sharp
increase in the correctness between the Category 1 and Category
3. However, the performance increases only slightly between Cat-
egories 3 and 5. In the last category we even see a small reduction
in the correctness of the classification. This suggests thatthe optimal
size of the training set is reached at around 2500 examples.

The highest ratio of correct classifications we obtained is 66.8 %
(Category 5). If we take the RoboCup’s domain characteristics and

Figure 6. Learning curve of the agent

restrictions into account, we can say that this value is quite reason-
able. Especially our results seem to compare favorably withother
case studies. For example, Matsubaraet. al. [7] performed an exper-
iment, in which only the simple situation of two attackers attempting
to score a goal against a single opponent is examined. In thisexper-
iment, the attackers learned when to select either ‘pass’ or‘shoot’
actions. The ratio of the correct classification that the results showed
was 68 %. Note also that the choices in this experiment are farsim-
pler than in our case where we consider all skills for all types of
players.

AllemaniACs: Robolog 2 : 0
AllemaniACs: VirtualWerder 1 : 0
AllemaniACs : UvaTrilearn 0 : 9
AllemaniACs : WrigthEagle 0 : 0

Table 4. Some test game results

We played several games against SIMULATION LEAGUE teams
from 2003 showing the performance of the learned decision tree. Ta-
ble 4 shows the results of some of these games. Against mediocre
teams like Robolog or Virtual Werder we are able to win. Against
the world champion Uva Trilearn our approach leaves room forim-
provement. One has to note that for these games the agent usedthe
decision tree when a player was in ball possession and executed some
standard behavior like “move to strategic position” or “search ball”
otherwise. The agent was not highly tuned as we wanted to see the
performance of the decision tree.

5 Conclusions

In this paper we described an application of the decision-tree learn-
ing methodC4:5 to RoboCup’s SIMULATION LEAGUE. The method
was used to learn the action selection strategy of the whole team,
that is, defenders, midfielders, and attackers, when a player is in ball
possession. We were able to obtain decision trees which performed
surprisingly well in real game situations. Moreover, the method is
suitable for selecting the relevant attributes from a givenset of qual-
itative world descriptors.

While this paper focusses on reactive action selection, we believe
that cooperative team-play cannot be achieved by reactive control
alone, taking only the current game situation into account.Consider,
for example, the situation where a wing-change would be necessary



because one side of the field is blocked by opponents. A good choice
would be to shift the game to the other wing of the field. It is hard to
imagine how such behavior could come about without some formof
deliberation where different possible courses of action are considered
and evaluated.

For this purpose we have developed an architecture which pro-
vides for reactive control as well as adeliberative componentusing
the logic-based language Golog [6]. Golog is a language for reason-
ing about actions and change and is based on the situation calculus
[16]. Recent extensions like dealing with a continuously changing
world [5] and the integration of a form of decision-theoretic planning
[2] to account for the uncertainty arising in the soccer domain makes
it a suitable language to reason about scenarios like a wing-change
and to coordinate the agents accordingly (cf. [3] for an example in
the soccer domain).

When using deliberation one needs a symbolic representation of
the environment. Therefore, we are interested in building up a qual-
itative world model which can be used for the deliberative compo-
nent. One of the central problems is finding the appropriate attributes
to describe the environment in a qualitative way. Recently,Dylla et
al. [4] approached this problem by looking at the issue of specifying
soccer moves based on the knowledge from a domain expert’s (from
[12] in their case) for different ROBOCUP leagues. As soccer theory
is described in a very abstract fashion, qualitative descriptions clearly
seem important, but the theory itself does not answer the question of
which qualitative descriptions are most suitable.

The present paper can perhaps be thought of as one step in this
direction. As we saw, one interesting outcome is that for theplayer in
ball possession only the five nearest team-mates and opponents seem
to matter. Applying the presented approach also for other players
like the goal keeper one probably can learn more about the relevant
information in robotic soccer.

We believe that the proposed method for reactive action selection
is not restricted to the ROBOCUP domain. Highly dynamic domains
have in common that actions must be performed rapidly, even if
those actions seem to be sub-optimal. Applying decision-tree learn-
ing yields one method for implementing a reactive action selection
mechanism. In future work we will apply this approach to other
dynamic real-time domains, for instance to soft-bots in computer
games, to get comparable results. Also the suitability of decision-
tree learning for achieving good attribute sets for qualitative world
modeling will be further investigated.

Acknowledgments

This work was supported by the German National Science Founda-
tion (DFG) in the Priority Program 1125,Cooperating Teams of Mo-
bile Robots in Dynamic Environments. We would like to thank the
anonymous reviewers for their comments.

REFERENCES
[1] R.de Boer and J.Kok,The Incremental Development of a Synthetic

Multi-Agent System: The UvA Trilearn 2001 Robotic Soccer Simula-
tion Team, Master’s thesis, University of Amsterdam, 2002.

[2] Craig Boutilier, Ray Reiter, Mikhail Soutchanski, and Sebastian Thrun,
‘Decision-theoretic, high-level agent programming in thesituation cal-
culus’, in Proc. of AAAI-00, pp. 355–362. AAAI Press, (July 30– 3
2000).

[3] F. Dylla, A. Ferrein, and G. Lakemeyer, ‘Specifying multirobot co-
ordination in ICPGolog – from simulation towards real robots’, in
Proc. of the Workshop on Issues in Designing Physical Agentsfor Dy-
namic Real-Time Environments: World modeling, planning, learning,
and communicating (IJCAI 03), (2003).

[4] Frank Dylla, Alexander Ferrein, Gerhard Lakemeyer, JanMurray,
Oliver Obst, Thomas Röfer, Frieder Stolzenburg, Ubbo Visser, and
Thomas Wagner, ‘Towards a League-Independent QualitativeSoccer
Theory for Robocup’. accepted at 8th RoboCup InternationalSympo-
sium as poster.

[5] Henrik Grosskreutz and Gerhard Lakemeyer, ‘On-line execution of cc-
Golog plans’, inProc. of IJCAI-01, (2001).

[6] H.Levesque, R.Reiter, Y.Lesperance, F.Lin, and R.Scherl, ‘Golog: A
logic programming language for dynamic domains’,Journal of Logic
Programming, (1997).

[7] H.Matsubara, I.Noda, and K.Hiraki., ‘Learning of cooperative actions
in multi-agent systems: a case study of pass play in soccer’,In S. Sen,
editor, AAAI Spring Symposium on Adaptation, Coevolution and Learn-
ing in multi-agent systems, (1996).

[8] M. Humphrys, ‘Action selection methods using reinforcement learn-
ing’, in From Animals to Animats 4: Proceedings of the Fourth Interna-
tional Conference on Simulation of Adaptive Behavior, eds., P. Maes,
M. Mataric, J.-A. Meyer, J. Pollack, and S. Wilson. MIT Press, (1996).

[9] J.Quinlan, ‘Induction of decision trees’,Machine Learning, Kluwer
Academic Publishers, (1986).

[10] J.Quinlan,C4.5 Programs for Machine Learning, Morgan Kaufmann,
1993.

[11] L.-J. Lin, ‘Scaling up reinforcement learning for robot control’, inProc.
10th Int. Conf. on Machine Learning, (1993).

[12] Massimo Lucchesi,Coaching the 3-4-1-2 and 4-2-3-1, Reedswain Pub-
lishing, 2001.

[13] M.Riedmiller, A.Merke, D.Meier, A.Hoffman, A.Sinner, O.Thate, and
R.Ehrmann, ‘Karlsruhe brainstormers - a reinforcement learning ap-
proach to robotic soccer’, inRoboCup 2000, Lecture Notes in Artificial
Intelligence, Springer-Verlag, (2001).

[14] P.Antognetti and V.Milutinovic,Neural Networks: Concepts, Applica-
tions, and Implementations, Vol. II, Printice Hall, 1991.

[15] P.Stone,Layered Learning in Multiagent Systems: A Winning Approach
to Robotic Soccer (Intelligent Robotics and Autonomous Agents), MIT
Press, 2000.

[16] R. Reiter,Knowledge in Action, MIT Press, 2001.
[17] R.Sutton and A.Barto,Reinforcement Learning: An Introduction, MIT

Press, 1998.
[18] R. Salustowicz, M. Wiering, and J. Schmidhuber, ‘Learning team strate-

gies: Soccer case studies’,Machine Learning, 2/3(33), 1–19, (1998).
[19] P.Norvig S.Russell,Artificial Intelligence: A Modern Approach-Second

Edition, Printice Hall, 2002.
[20] S.Whiteson and P.Stone, ‘Concurrent layered learning’, in Proceedings

of the second international joint conference on Autonomousagents and
multiagent systems, pp. 193–200. ACM Press, (2003).

[21] T.Mitchell, Machine Learning., McGraw-Hill, 1997.
[22] U.Visser and H.G.Weland, ‘Using online learning to analyze the oppo-

nent’s behavior’, inRoboCup 2002, Lecture Notes in Artificial Intelli-
gence, Springer-Verlag, (2003).


