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Abstract. Mobile service robots in human environments need to have versatile
abilities to perceive and to interact with their environment. Spoken langisage
a natural way to interact with a robot, in general, and to instruct it, in particula
However, most existing speech recognition systems often suffertiighmenvi-
ronmental noise present in the target domain and they require in-deptiiddge

of the underlying theory in case of necessary adaptation to reach tineddas-
curacy. We propose and evaluate an architecture for a robustesped&pendent
speech recognition system using off-the-shelf technology and simglgcaxl
methods. We first use close speech detection to segment closed wsandrich
alleviates the recognition process. By further utilizing a combination of && FS
based and afv-gram based speech decoder we reduce false positive recognitions
while achieving high accuracy.

1 Introduction

Speech recognition is a crucial ability for mobile serviobats to communicate with
humans. Spoken language is a natural and convenient mearsdrtect a robot if it is
processed reliably. Modern speech recognition systemsachieve high recognition
rates, but their accuracy often decreases dramaticallpisyrand crowded environ-
ments. This is usually dealt with by either requiring an adimwise-free environment
or by placing the microphone very close to the speaker’'s mithough we already
assume the latter, all requirements for a sufficiently higgusacy cannot always be met
in realistic scenarios.

Our target application is a service-robotics domain, irtipalar, the RoBOCuP-
@HowME league [1], where robots should assist humans with thenydeg activities
in a home-like environment. Any interaction with a robot has$e done in a natural
fashion. That is to say, instructions issued to the robot ordy be given by means of
gestures or natural spoken language. An important propéthe domain, especially at
a competition, is the high amount of non-stationary backgdonoise and background
speech. A successful speech recognition systemasd@upP@HOME must be able
to provide robust speaker-independent recognition of inasimmand-like sentences.
For one, it is important that commands given to the robot ecegnized robustly. For
another, spoken language not directed to the robot musenoigiched to an instruction



for the robot. This is a non-trivial task in an environmenthwa high amount of back-
ground noise. That is why most teams use a head mounted rhameor their speech
recognition. Still, it is not easy to determine which audiput is actually addressed to
the robot and which one is not. This is even more so, sincaméltompetition there
usually is a person that describes to the audience what isrglyr happening in the
arena via loudspeakers. The words used for the presentaftiem are very similar if
not even the same used to instruct the robot. This compichestask of robust speech
recognition even more.

We propose an architecture that tackles the problem of tapegch recognition in
the above setting. It comprises two steps. First, we useeslbtd based close speech
detection module to segment utterances targeted at thé fralo the continuous au-
dio stream recorded by the microphone. Then, we decode thtsances with two
different decoders in parallel, namely one very restrectiecoder based on finite state
grammars and a second more lenient decoder uSirgzams. We do this to filter out
false positive recognitions by comparing the output of the tlecoders and rejecting
the input if it was not recognized by both decoders.

The paper is organized as follows. In Section 2, we descdbedasics of common
speech recognition systems. Then we propose our archiéeantid discuss related work.
We go into detail about our close speech detection in Seé&tiand the dual decoding
in Section 4. After an experimental evaluation in Sectiow® conclude in Section 6.

2 Foundationsand Approach

We first sketch properties of common statistical speechgm@tion systems. Then we
propose a system architecture that tries to combine therg=aof different approaches
to tackle the problems present in our target domain.

2.1 Statistical Speech Recognition

Most statistical speech recognition systems availablaytage hidden Markov models
(HMMs). For a given vector of acoustical datahey choose a sequence of wotdls,;
as best-hypothesis by optimizing

Wopt = arg max p(w|x) = arg max W = arg max p(z|w) - p(w). (1)
Herep(w|x) is the posterior probability ofv being spoken, the fundamental Bayes’
decision rule is applied to it. The constant normalizatioobability p(z) can be omit-
ted for the maximizationp(z|w) denotes the probability of observing the acoustical
datax for the assumption ofv being spoken. This is given to the recognizer by the
acoustic-modelp(w) denotes the probability of the particular word-sequencec-
curring. This prior probability is provided to the recogeidy the so-called language-
model. The language model can either be represented by argram.g. dinite state
grammar (FSG), or by means of a statistical model, mostly in form ofcatted N-
gramsthat provide probabilities for a word dependent on the mnesi(N-1) words.
Common speech-recognizers use 3-grams, also chli€dams



Standard statistical speech recognition systems procegsgea speech utterance
time-synchronously. Each time-frame, possible sub-worils (modeled by HMM-
states) and word-ends are scored considering their acaligtobability and their lan-
guage model probability. Most of the possible hypothesesesconsiderably worse
than the best hypothesis at this time frame and are pruney &whe search for a
best hypothesis information about possible near altemttan be kept to allow for
useful post-processing. For each time-frame, the mostalebhypotheses of words
ending at that frame are stored along with their acoustmales. This information can
be appropriately represented by a directed, acyclic, vietggraph calledvord-graph
or word-lattice Nodes and edges in the graph denote words, their stareframd their
acoustic likelihoods. Any path through the graph, staribh¢ghe single start-node and
ending in the single end-node, represents a hypothesisidocamplete utterance. By
combining the acoustical likelihoods of the words contdiaéong this path with the
language model probability we obtain the scpfe|w) - p(w). The so-calledV-best list
contains all possible paths through the word-graph thaewet pruned in the search,
ordered by their score.

The language model used in searching for hypotheses largklgnces the perfor-
mance of a speech recognition system. Thus, it is crucididogse a model appropriate
for the particular target application to achieve suffidggbod results. On the one hand,
FSG-based decoders perform good on sentences from thigictexs grammar. On the
other hand, they get easily confused for input that does ttitdfigrammar used. This
can lead to high false recognition ratéé-gram based language models are good for
larger vocabularies, since utterances do not have to falswict grammar.

2.2 Approach

For our target application we are confronted with a high amofinon-stationary back-
ground noise including speech similar to the vocabularg tieénstruct the robot. Only
using an FSG-based decoder would lead to high false re¢ognites. We aim to elim-
inate false recognitions with a system that exploits the@erties of different language
models described above. In a first step, we try to segmemnattes that are potential
speech commands issued to the robot from the continuous atrdam recorded by the
robot’s microphone. Then, we decode those utterances twimgecoders in parallel,
one FSG-based and a second TriGram based one to combinentsfgef both. An
overview of our system’s architecture is shown in Figure 1.

Segmentation of close speech sections
We employ a module that is supposed to segnubode speech sectiorieom the

continuous live stream, i.e. sections where the main pespe@ks closely into the
microphone. We call thiglose speech detectiq€SD). Doing this provides us with
two advantages. First, with the (reasonable) presuppasitiat the speech to be rec-
ognized, we call ipositive speecghis being carried out close to the microphone, we
can discriminate it from other (background) speech evéuatisare not relevant and thus
may cause false recognitions. These false recognitiongdviiuwrongly matched to a
speech command for the robot. Second, the performance etispecognition engines
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Fig. 1: Architecture of our dual decoder system

like SPHINX [2] increases considerably, if the speech input occursased utterances
instead of a continuous stream. Furthermore, we are abkedtece the computational
demands for speech recognition if we only process inputtef@st instead of decod-
ing continuously. This is especially useful for mobile rtibglatforms with limited
computing power.

Multiple decoders

As already mentioned, different types of decoders exhilfferént properties we
would like to combine for our application. For one, we areeiasted in the high ac-
curacy that very restricted FSG decoders provide. But waazaiford to accept a high
rate of falsely recognized speech that is then probably medt¢o a legal command.
For another, TriGram-based decoders are able to reliabdcteords from a larger vo-
cabulary and they can generate appropriate hypothesettéoainces not coming from
the grammar, i.e. that are not positive speech. Howeverctraes with the drawback
of an increased error rate in overall sentence recogni8th, a sentence at least sim-
ilar to the actual utterance will very likely be containedtie N-best list, the list of
the n hypotheses with the highest score. By decoding withs® &nd a TriGram de-
coder in parallel we seek to eliminate each decoders drdwh@taining its benefits.
We can look for similarities between the FSG’s output and¥hbest list of the trigram
decoder. This allows detecting and rejectfatse positive recognitionsom the FSG
decoder.

In principle, any automatic speech recognition systemphatides the ability to use

both, FSG andv-gram based decoding withi-best list generation, could be employed
within our proposed architecture. We chose to useii8x 3 because it is a freely



available open source software, it is under active devedwith good support, it is
flexible to extend, and it provides techniques for speakaptdn and acoustic model
generation. For an overview of an earlier version of tirei®ix system we refer to [2].

2.3 Related work

For speech detection, also referred to as speech activigctitn (SAD), endpoint
detection, or speech/non-speech classification, speastfisskiave to be detected and
preferably also discriminated against non-speech eventarous energy levels. There
has been work on this problem in the last decades, some ofhalso employs threshold-
approaches like an earlier work of Rabiner detecting enguiges of isolated words [3],
and [4]. One of the main differences to our approach is thet ttynamically adapt the
threshold to detect speech on various energy levels. Foamplication, however, it is
more preferable to use a static threshold since the envieatahconditions may vary
but the characteristics of the aural input of interest da Rotthermore, we dynam-
ically allocate the distance allowed between two spokerd&and we apply simple
smoothing of a signal’s energy-value sequence. For a morergksolution to the prob-
lem of speech activity detection threshold-based appemoften do not work since
they are not robust enough on higher noise levels. More tadgysroaches use, for
example, linear discriminant analysis (LDA) like [5] and,[6r HMMs on Gaussian
Mixtures [7]. Our aim is to use detection of close speech aslya pre-processing step
before decoding. That is why we do not want to put up the amfthti costs for these
more sophisticated approaches.

To improve the accuracy of speech-recognition systemsamigar-definable utter-
ances while also rejecting false-positives, usually iptdénowledge of the low-level
HMM-decoding processes is required. There has been worktegrating/N-grams
and finite state grammars [8] in one decoding process forctiete FSG-definable
sentences. They assume that the sentences to detect ally sstaunded by car-
rier phrases. Thé/-gram is aimed to cover those surrounding phrases and theé$=SG
triggered into the decoding-process if start-words of ttegnar are hypothesized by
the N-gram. To reject an FSG-hypothesis they consult threshmidacoustical like-
lihoods of the hypothesized words. Whereas this approaadhiresgintegration with
low-level decoding processes, our dual-decoder approathpzrforms some post-
processing on the hypotheses of tNebest-list. In combination with the CSD front-
end we achieve acceptable performance for our applicatithout modifying essential
parts of the underlying system. Instead of using two deouteparallel, a more com-
mon method could be to use &rgram language model in a first pass and to re-score
the resulting word-graph a¥-best list using an FSG based language model afterwards.
However, independently decoding with an FSG-based deaaatebe expected to pro-
vide higher accuracy for the best hypothesis than the begxsithgsis after re-scoring a
word-graph with an FSG language model. It would be promisingugh, to combine
a two-pass approach or our dual-decoder with a method ftistitally approximat-
ing confidences [9] (in terms of posterior-probabilitie§hgpothesized words given a
word-graph. A reliable confidence measure would provideagoethod for rejection
with a threshold.



3 Close Speech Detection

Our approach to detect and segment sections of close spemuhafcontinuous au-
dio stream is quite simple. It makes use of the straightfaividea that sounds being
produced close to the microphone exhibit considerably kiggrgy levels. Thenergy
valuesof an audio input are provided when working with speech ratamn systems
as they extract cepstral coefficients as features from thgstic signals. The first value
of the cepstral coefficients can be understood as the sigloglarithmic energy value.
Close speech is detected by first searching for energy viha¢exceed some upper
threshold. Then, we determine the start and the end-poititeofegment. Therefore,
we look in forward and backward direction for points where fpeech’s energy val-
ues fall below a lower threshold for some time. Note that shigightforward approach
can only detect speech carried out close to the microphoowetrer, this is expressly
aimed for in our application since it provides a simple anoust method to discrim-
inate between utterances of the "legal speaker” and othabygiespeakers as well as
background noise.

3.1 Detailed Description

Examining a sequence of energy values, speech-segmertsaeeterized by adjacent
heaps (see Figure 2: E[t]). For our aim of detecting closeapsegments we use two
thresholds, namely,,, andT,.,,. The first threshold’,, mainly serves as a criterion
for detecting a close-speech-segment when some energysvakeeed it. Thusl),,
should be chosen so that for close speech segments somelwfapg are expected to
exceedl}, while other segments do not.

After this initial detection, the beginning and the end & #peech segment have to
be determined such that the resulting segment containgafishadjacent to the initial
peak. Therefore, starting from the detection point, we @eoan forward and backward
direction. We search for points where the energy value dvefisv the second threshold
Ta0wn @and does not recover again within a certain amount of tiramés. We thereby
identify the beginning and the end of the speech segmengecésely. T, should
be chosen largest so that still all heaps of a close speetibrsace expected to exceed
it and lowest so that the energy-level of the backgroundenaisd most background
sound events do not go beyofiy,.,,. The amount of time-frames given for recover-
ing again represents the maximal distance we allow betweerheaps, i.e. between
two consecutive words. We call this tladive-time We further enhance this approach
by smoothing the sequence of energy levels before progpgsimd by dynamically
allocating the time to recover from dropping bel@W, ...

Smoothing the energy values The energy-value-sequence is smoothedsef( E, t)

in Figure 2) to prevent punctual variations to take effectttom detection of speech-
segments and the determination of the alive-time. We coenttwet smoothed values by
averaging over the current energy-value and the threedaofj¢ghe previous six energy-
values, i.e. for an energy-sequerficand time-frame we use the smoothing function:

sm(E, t) = i - max{E[f] + E[t:] + Elta] + Elts] | t: € {t —1,...,¢ — 6}}.
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Fig. 2: Segmentation of close speech segments

Start/End-point detection The amount of time-frames given to recover from falling
below Ty,.., is not fixed but is determined dependent on the height of thtehl@ap’s
peak and the distance to this peak. Thus, the closer the p#aklast heap is t@ ;o ,

i.e. the less the confidence is for the last heap being praiduca close speech, the less
time-frames we grant before the next heap must occur (g&-éilne of right-most heap
in Figure 2(c)). This helps to prevent that background ssumklich intersect with the
close-speech segment or directly succeed/precede themtacid exceedl ., (like

a nearby speech) cause the fixation of the start or end pomthafse-speech segment
to be postponed over and over again. For energy-valuesegtdain’,,, we assign the
alive-time AT,,,, for the valueTl,,,,, we assign the alive-timé Ty, and for values
between?’,, and T,,,, We calculate a time-value by linearly interpolating betwee
AT, and AT youn

Aﬂlp , U2 T’up
. . ATwp—ATdown
ahve,tlme(v) = Tuz_i’fd;m : (’U - Tdou)n) + Taown > Taown <v < Tup
0 » U < Taown

After a close-speech segment is detected we proceed in riaitveeckward direction
(see Figure 2(b) and Figure 2(c)). For each time-franvee compute the alive-timet



as the maximum of the value associated with the smoothedenatueat(sm(E,t))

and the alive-time value chosen in the previous time-frarmigone ¢t(t — 1) — 1).
Obviously, when the energy-value-sequence falls bdlgyy,,, the alive-time decreases
each time-frame. 16 is reached before the values recover again, we determirgatie
and end point of the close-speech-segment at that framedisas we have determined
the start point of a segment, we can start passing the ingbetdecoders. This dras-
tically increases the reactivity of the system. For now, wanuoally define the actual
thresholdsr’,, and Ty, based on the environmental conditions at a particular site.
We fixed AT, at 50 time-frames §00 ms) and ATq,.,, at25 time-frames £50 ms).
These values were determined empirically.

4 Dual Decoding

As mentioned in Section 2.1, in statistical SR-systems ftigrozation of the posterior
probabilitiesp(w|x) is approached by maximizing the scoggs|w) - p(w) where the
likelihood p(x|w) is given by an acoustical model and the prior probabijlity) is pro-
vided by a language model. The set of utterances to recogna target application
per task is quite limited and very structured. It can thusreppately be defined by a
grammar. Consequently, a language model based on a firtéegstemmar (FSG) seems
most suitable. Even though we assume our CSD already fileresome undesired in-
put, we are confronted with a high rate of false positive ggitions ofout-of-grammar
(OOG) utterances which we cannot afford and have to take @ar@iven an OOG
utterancer, a restricted FSG-based decoder cannot come around tohegxdr as
anin-grammar(IG) sentencev (or prefixes of it), since the word-sequence probability
for all other sentences(w’) is 0 because they are not part of the grammar. This holds
even if we suppose the acoustical probabifity:|w) for an IG-sentence to be low. The
acoustical probability mainly plays a decisive role foradisination between differ-
ent utterances from within the language model. A TriGram-based languageleho
contains many more possible utterances, hence a decodgraugih a language model
can also hypothesize those other sentences when it is givetterance that is OOG
(with respect to the FSG). Unfortunately, it cannot providewith an accuratbest
hypothesigeliably enough. That is, the correct sentemgefor a given I1G-utterance
2 will not be the best hypothesis often enough. Otherwise, awddcjust stay with a
single TriGram-based decoder for recognition. But we cdizeita TriGram language
model to help rejecting OOG utterances hypothesized by 8®-Bbased decoder. For
this the TriGram has to comprise a larger vocabulary tharspgezific grammar and
provide not-too-low probabilities for appropriate comdtions of these words, i.e. for
OOG sentences.

Let us consider a false positive recognition where an OCQ€rarcer is falsely rec-
ognized as an IG-sentenegeby the FSG-based decoder. With an appropriate modeling
of the TriGram we can assume it to provide OOG-sentencesith significant prob-
abilities within its language-model. We can also assumgttigaacoustical probability
p(z|w") for thosew’ corresponding to the actual utterance exceed the acoystata
ability of each falsely hypothesized |G-senteneeonsiderably. So for the TriGram-
based decoding process the comparatively low acousticdlapility p(x|w) causes



some words ofv to be pruned away around the corresponding time-frameswieey
hypothesized at by the FSG-decoder. Hence, the word-gnaglthais theN-best list
produced by the TriGram-based decoder will not contain ¢ugiencev. On the other
hand, given an IG utteranceand its sentence,., the comparatively high acoustical
probability p(z|w) (in combination with a still sufficiently high language padiility)
likely prevents that words ofv, are pruned in the decoding process. Therefore, the
N-best-list will still containw.,.

Consequently, we accept the hypothesis of the FSG-basextigiedf it can be
matched with some hypothesis within thebest list of the TriGram decoder. To not
compare utterances from different instances of time, themivag also takes word-start-
frames into consideration.

4.1 Hypothesis matching

For the matching of the FSG-best hypothesjss with one of theNV-best hypotheses
of the TriGramw,,, we require that the words afzgs occur in the same order i,,.
The difference in the start-frames of the matched wordd slodlexceed a predefined
maximal offset. For this, we simply iterate through the weetjuencev,,. If the current
word of w,, matches with the current word afrsc (considering the maximal offset
allowed), we proceed to the next word ofs¢. If all words of wrgs are processed,
we accept the FSG’s hypothesis. Within this matching, weagsromit hypothesized
filler-words like SILENCE For some cases, we experienced that an additional hearisti
can improve the acceptance rate. As so, for longer wordesemsw s hypothesized
by the FSG-based decoder it can be reasonable not to refatralt words inwrsg
have to be matched on thé-best hypothesis compared to. There is a trade-off between
good acceptance rate and good rejection rate when reldxéngatching. Since we only
want to make sure that the FSG’s hypothesis is not a falséyeogie argue that enough
evidence is given if the FSG’s and the TriGram’s hypotheses Ibeen similar enough.
Therefore, we allow to skip some wordswof-s during the matching dependent on the
number of words ofvrs (e.9. in our application we allow to skip 1 word|if psc| >

4, skip 2 words iffwrsc| > 6 ...). This can be incorporated very easily in our matching
procedure we explained above.

5 Experimental Evaluation

To evaluate our approach we conducted several experimargpaech input recorded
in the RoBoCuP@ HOME environment during a competition. We use a freely available
speaker independent acoustic-model for threii®ix 3 speech engine build with the
WSJ-corpus [10]. The FSG decoder was run with the specific myamfor the naviga-
tion task shown in Table 1.

The performance of the our dual-decoder systems is infleebgeeveral parame-
ters. We adjusted these in such a way, that the trade-offdegtWwigher acceptance-rate
of IG-utterances and higher rejection-rates of OOG-utiega tends to a higher accep-
tance rate. That is because we expect to let pass a fairlyrtmuat of OOG speech-like
utterances in the close-speech detection step already.



command = [ salut] instruct TO THE locatigrSTOP

salut = ROBOT [ PLEASE ]

instruct = GO| NAVIGATE | DRIVE | GUIDE ME

location = ARM CHAIR| PALM [TREE] | WASTE (BASKET | BIN) | TRASH CAN | UPLIGHT |
REFRIGERATOR| FRIDGE | COUCH | SOFA| PLANT | BOOKSHELF| SHELF|
(COUCH| SIDE | COFFEE| DINNER | DINNING) TABLE | [FRONT] DOOR| LAMP

Table 1: Grammar for the navigation task

(b) error rates and real-time factors

(a) Dual decoder (RTF) for single decoders
rejectedaccepted WER| SER |RTF
recognized 8.6% | 77.6% (86.2% TriGram-base.9%30.7%|0.99
falsely recognized 3.6% | 10.2% {13.8% FSG-baseg!.1%(13.8%0.24
12.2% | 87.8%

Table 2: Accuracy and rejection results of dual decoder for legal commands

5.1 Recognition Accuracy

To assess the overall recognition performance of our dualdir system compared to
a TriGram-only and an FSG-only system, we compiled a settefarnices that are legal
commands of a particular task in theoRoCup@ HoME domain. The FSG decoder
is using the corresponding grammar of this specific task. Tif@ram decoder in our
dual decoder system uses a language model constructed firtasks (excluding the
task used for evaluating the rejection of OOG-utterancéshe RoBoCurP@ HOME
domain with an additional set a00 sentences of general purpose English. To achieve
best performance the TriGram-only decoder uses a languagelroonstructed from
navigation sentences only.

In our particular evaluation setup we fé23 (20.6 minutes) correct commands from
the navigation task (cf. Table 1) to all three decoders. d@bthows the accuracy and
rejection results. For our dual-decoder, we consider amarite successful if it is recog-
nized correctly and accepted. The recognition rates aedb@sthe FSG decoder while
the rejection rates are based on the matching between th& kRg@othesis and the
first 25 entries of the TriGram’sV-best list. In the TriGram-only case, we take the best
hypothesis as the recognition output. The results inditatieusing two decoders in par-
allel yields successful processing. Adding 158% of falsely recognized commands
and&.6% of correctly recognized but rejected commands, we recetegahof 22.4%
of unsuccessfully processed utterances in comparis@0.%% of an TriGram-based
decoder. The sentence-error rate (SER) is a more meanimgfassure than the word-
error rate (WER) here, because we are interested in the arobs@tences containing
errors and not in the number of errors per sentence.10H®% of falsely recognized
but accepted utterances are critical in the sense that thegt have caused a false com-
mand to be interpreted. Depending on the application, hgsss that differ from the
reference spoken can still result in the same command,R@BOT PLEASE GO TO
THE REFRIGERATOR” yields the same command as “DRIVE TO FREXGIo give
an idea about possible proportions, for the dual-decodeuomavigation task half of
the potentially critical utteranced{.2%) are matched on the same command. For the
TriGram-decoder this is the case for one fifth of 80er% of all sentence errorg4.2%
(overall) are OOG-sentences and thus are not matched to andswat all. To compare



Decoder |[FPacceptea| Error rate on correct commands
Single (FSG only) | 93.9% | 13.8% (SER)
Single (TriGram only) 16.1% 30.7% (SER)
Dual (FSG+TriGram) 17.7% 13.8% (SER) + 8.6% (falsely rejected)

Table 3: Acceptance rates of false positive (FP) utterances and error rategadtommands

the processing speed, we also measured the real-time {(&7ibj), i.e. the time it takes
to process a signal of duration We achieved an RTF of.16 for our dual-decoder
system on a Pentium M with 6 GHz. This is fast enough for our application, since we
are given closed utterances by our CSD front-end and we adgdk those. RTFs for
the single-decoder systems (with relaxed pruning threshiar best accuracy) on the
same machine are listed in Table 2(b).

5.2 Reection Accuracy

To assess the performance of our dual decoder system irtingjg@OG utterances
(with respect to the FSG) we collected a set of utterancestbdegitimate commands
of the RoBoCup@ HoME domain (all tasks) but that do not belong to the specific task
the FSG decoder is using. Please note that this is close tost vase analysis since
not all of the utterances that make it to the decoder stageéalesetup will be legal
commands at all. In our particular case we td&4 commands44 minutes) from
the final demonstration task and the manipulation task atdidhfese commands to an
FSG-only system, a TriGram-only system, and our proposetidkcoder system. All
three decoders had the same configuration as in the reangse#iup above. The FSG
decoder for the single case and within our dual-decodeesystas using the navigation
task grammar (cf. Table 1). As can be seen in Table 3, theesiR§G decoder setup
would have matched ovéB8% of the false positive utterances to valid robot commands.
With our dual decoder approach, on the other hand, the systeable to reject more
than82% of those false utterances. With a TriGram-only decoder welevbave been
able to rejec84%, but this would have come with a prohibitive error rate of etitan
30% for correct commands as shown in Table 3 and Table 2(b) alread

6 Conclusion

In this paper, we presented an architecture for a robusthpeeognition system for
service-robotics applications. We used off-the-shelistiaal speech recognition tech-
nology and combined two decoders with different languageéetsoto filter out false
recognitions which we cannot afford for a reliable systermtdruct a robot. The ad-
vantages of our system in comparison to more sophisticatpaches mentioned are
as follows. It provides sufficiently accurate speech d@aatesults as a front-end for
ASR-systems. Our approach is computationally efficient atatively simple to im-
plement without deeper knowledge about speech recogritieriors and sophisticated
classifiers like HMMs, GMMs or LDA. It is therefore valuablerfgroups lacking back-
ground knowledge in speech recognition and aiming for asbbpeech recognition
system in restricted domains.



As results are very promising so far, a future issue wouletxamine the system’s
performance for far-field speech, that is not using a headfgetimagine this to be
worthwhile especially when we integrate filter methods sasleam forming for on-
board microphones with sound-source localization [11, 12]
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