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Abstract. Mobile service robots in human environments need to have versatile
abilities to perceive and to interact with their environment. Spoken languageis
a natural way to interact with a robot, in general, and to instruct it, in particular.
However, most existing speech recognition systems often suffer fromhigh envi-
ronmental noise present in the target domain and they require in-depth knowledge
of the underlying theory in case of necessary adaptation to reach the desired ac-
curacy. We propose and evaluate an architecture for a robust speaker independent
speech recognition system using off-the-shelf technology and simple additional
methods. We first use close speech detection to segment closed utterances which
alleviates the recognition process. By further utilizing a combination of an FSG
based and anN -gram based speech decoder we reduce false positive recognitions
while achieving high accuracy.

1 Introduction

Speech recognition is a crucial ability for mobile service robots to communicate with
humans. Spoken language is a natural and convenient means toinstruct a robot if it is
processed reliably. Modern speech recognition systems canachieve high recognition
rates, but their accuracy often decreases dramatically in noisy and crowded environ-
ments. This is usually dealt with by either requiring an almost noise-free environment
or by placing the microphone very close to the speaker’s mouth. Although we already
assume the latter, all requirements for a sufficiently high accuracy cannot always be met
in realistic scenarios.

Our target application is a service-robotics domain, in particular, the ROBOCUP-
@HOME league [1], where robots should assist humans with their everyday activities
in a home-like environment. Any interaction with a robot hasto be done in a natural
fashion. That is to say, instructions issued to the robot mayonly be given by means of
gestures or natural spoken language. An important propertyof the domain, especially at
a competition, is the high amount of non-stationary background noise and background
speech. A successful speech recognition system in ROBOCUP@HOME must be able
to provide robust speaker-independent recognition of mostly command-like sentences.
For one, it is important that commands given to the robot are recognized robustly. For
another, spoken language not directed to the robot must not be matched to an instruction



for the robot. This is a non-trivial task in an environment with a high amount of back-
ground noise. That is why most teams use a head mounted microphone for their speech
recognition. Still, it is not easy to determine which audio input is actually addressed to
the robot and which one is not. This is even more so, since within a competition there
usually is a person that describes to the audience what is currently happening in the
arena via loudspeakers. The words used for the presentationoften are very similar if
not even the same used to instruct the robot. This complicates the task of robust speech
recognition even more.

We propose an architecture that tackles the problem of robust speech recognition in
the above setting. It comprises two steps. First, we use a threshold based close speech
detection module to segment utterances targeted at the robot from the continuous au-
dio stream recorded by the microphone. Then, we decode theseutterances with two
different decoders in parallel, namely one very restrictive decoder based on finite state
grammars and a second more lenient decoder usingN -grams. We do this to filter out
false positive recognitions by comparing the output of the two decoders and rejecting
the input if it was not recognized by both decoders.

The paper is organized as follows. In Section 2, we describe some basics of common
speech recognition systems. Then we propose our architecture and discuss related work.
We go into detail about our close speech detection in Section3 and the dual decoding
in Section 4. After an experimental evaluation in Section 5,we conclude in Section 6.

2 Foundations and Approach

We first sketch properties of common statistical speech recognition systems. Then we
propose a system architecture that tries to combine the features of different approaches
to tackle the problems present in our target domain.

2.1 Statistical Speech Recognition

Most statistical speech recognition systems available today use hidden Markov models
(HMMs). For a given vector of acoustical datax they choose a sequence of wordswopt

as best-hypothesis by optimizing

wopt = arg max
w

p(w|x) = arg max
w

p(x|w) · p(w)

p(x)
= arg max

w

p(x|w) · p(w). (1)

Herep(w|x) is the posterior probability ofw being spoken, the fundamental Bayes’
decision rule is applied to it. The constant normalization probability p(x) can be omit-
ted for the maximization.p(x|w) denotes the probability of observing the acoustical
datax for the assumption ofw being spoken. This is given to the recognizer by the
acoustic-model.p(w) denotes the probability of the particular word-sequencew oc-
curring. This prior probability is provided to the recognizer by the so-called language-
model. The language model can either be represented by a grammar, e.g. afinite state
grammar(FSG), or by means of a statistical model, mostly in form of so-calledN -
grams that provide probabilities for a word dependent on the previous (N-1) words.
Common speech-recognizers use 3-grams, also calledTriGrams.



Standard statistical speech recognition systems process agiven speech utterance
time-synchronously. Each time-frame, possible sub-word-units (modeled by HMM-
states) and word-ends are scored considering their acoustical probability and their lan-
guage model probability. Most of the possible hypotheses score considerably worse
than the best hypothesis at this time frame and are pruned away. In the search for a
best hypothesis information about possible near alternatives can be kept to allow for
useful post-processing. For each time-frame, the most probable hypotheses of words
ending at that frame are stored along with their acoustical scores. This information can
be appropriately represented by a directed, acyclic, weighted graph calledword-graph
or word-lattice. Nodes and edges in the graph denote words, their start-frames and their
acoustic likelihoods. Any path through the graph, startingat the single start-node and
ending in the single end-node, represents a hypothesis for the complete utterance. By
combining the acoustical likelihoods of the words contained along this path with the
language model probability we obtain the scorep(x|w) · p(w). The so-calledN -best list
contains all possible paths through the word-graph that were not pruned in the search,
ordered by their score.

The language model used in searching for hypotheses largelyinfluences the perfor-
mance of a speech recognition system. Thus, it is crucial to choose a model appropriate
for the particular target application to achieve sufficiently good results. On the one hand,
FSG-based decoders perform good on sentences from their restricted grammar. On the
other hand, they get easily confused for input that does not fit the grammar used. This
can lead to high false recognition rates.N -gram based language models are good for
larger vocabularies, since utterances do not have to followa strict grammar.

2.2 Approach

For our target application we are confronted with a high amount of non-stationary back-
ground noise including speech similar to the vocabulary used to instruct the robot. Only
using an FSG-based decoder would lead to high false recognition rates. We aim to elim-
inate false recognitions with a system that exploits the properties of different language
models described above. In a first step, we try to segment utterances that are potential
speech commands issued to the robot from the continuous audio stream recorded by the
robot’s microphone. Then, we decode those utterances usingtwo decoders in parallel,
one FSG-based and a second TriGram based one to combine the benefits of both. An
overview of our system’s architecture is shown in Figure 1.

Segmentation of close speech sections
We employ a module that is supposed to segmentclose speech sectionsfrom the

continuous live stream, i.e. sections where the main personspeaks closely into the
microphone. We call thisclose speech detection(CSD). Doing this provides us with
two advantages. First, with the (reasonable) presupposition that the speech to be rec-
ognized, we call itpositive speech, is being carried out close to the microphone, we
can discriminate it from other (background) speech events that are not relevant and thus
may cause false recognitions. These false recognitions would be wrongly matched to a
speech command for the robot. Second, the performance of speech recognition engines
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Fig. 1: Architecture of our dual decoder system

like SPHINX [2] increases considerably, if the speech input occurs in closed utterances
instead of a continuous stream. Furthermore, we are able to reduce the computational
demands for speech recognition if we only process input of interest instead of decod-
ing continuously. This is especially useful for mobile robotic platforms with limited
computing power.

Multiple decoders
As already mentioned, different types of decoders exhibit different properties we

would like to combine for our application. For one, we are interested in the high ac-
curacy that very restricted FSG decoders provide. But we cannot afford to accept a high
rate of falsely recognized speech that is then probably matched to a legal command.
For another, TriGram-based decoders are able to reliably detect words from a larger vo-
cabulary and they can generate appropriate hypotheses for utterances not coming from
the grammar, i.e. that are not positive speech. However, that comes with the drawback
of an increased error rate in overall sentence recognition.Still, a sentence at least sim-
ilar to the actual utterance will very likely be contained inthe N -best list, the list of
the n hypotheses with the highest score. By decoding with an FSG and a TriGram de-
coder in parallel we seek to eliminate each decoders drawbacks retaining its benefits.
We can look for similarities between the FSG’s output and theN -best list of the trigram
decoder. This allows detecting and rejectingfalse positive recognitionsfrom the FSG
decoder.

In principle, any automatic speech recognition system thatprovides the ability to use
both, FSG andN -gram based decoding withN -best list generation, could be employed
within our proposed architecture. We chose to use SPHINX 3 because it is a freely



available open source software, it is under active development with good support, it is
flexible to extend, and it provides techniques for speaker adaption and acoustic model
generation. For an overview of an earlier version of the SPHINX system we refer to [2].

2.3 Related work

For speech detection, also referred to as speech activity detection (SAD), endpoint
detection, or speech/non-speech classification, speech events have to be detected and
preferably also discriminated against non-speech events on various energy levels. There
has been work on this problem in the last decades, some of which also employs threshold-
approaches like an earlier work of Rabiner detecting energypulses of isolated words [3],
and [4]. One of the main differences to our approach is that they dynamically adapt the
threshold to detect speech on various energy levels. For ourapplication, however, it is
more preferable to use a static threshold since the environmental conditions may vary
but the characteristics of the aural input of interest do not. Furthermore, we dynam-
ically allocate the distance allowed between two spoken words and we apply simple
smoothing of a signal’s energy-value sequence. For a more general solution to the prob-
lem of speech activity detection threshold-based approaches often do not work since
they are not robust enough on higher noise levels. More robust approaches use, for
example, linear discriminant analysis (LDA) like [5] and [6], or HMMs on Gaussian
Mixtures [7]. Our aim is to use detection of close speech onlyas a pre-processing step
before decoding. That is why we do not want to put up the additional costs for these
more sophisticated approaches.

To improve the accuracy of speech-recognition systems on grammar-definable utter-
ances while also rejecting false-positives, usually in-depth knowledge of the low-level
HMM-decoding processes is required. There has been work on integratingN -grams
and finite state grammars [8] in one decoding process for detecting FSG-definable
sentences. They assume that the sentences to detect are usually surrounded by car-
rier phrases. TheN -gram is aimed to cover those surrounding phrases and the FSGis
triggered into the decoding-process if start-words of the grammar are hypothesized by
the N -gram. To reject an FSG-hypothesis they consult thresholdson acoustical like-
lihoods of the hypothesized words. Whereas this approach requires integration with
low-level decoding processes, our dual-decoder approach only performs some post-
processing on the hypotheses of theN -best-list. In combination with the CSD front-
end we achieve acceptable performance for our application without modifying essential
parts of the underlying system. Instead of using two decoders in parallel, a more com-
mon method could be to use anN -gram language model in a first pass and to re-score
the resulting word-graph orN -best list using an FSG based language model afterwards.
However, independently decoding with an FSG-based decodercan be expected to pro-
vide higher accuracy for the best hypothesis than the best hypothesis after re-scoring a
word-graph with an FSG language model. It would be promising, though, to combine
a two-pass approach or our dual-decoder with a method for statistically approximat-
ing confidences [9] (in terms of posterior-probabilities) of hypothesized words given a
word-graph. A reliable confidence measure would provide a good method for rejection
with a threshold.



3 Close Speech Detection

Our approach to detect and segment sections of close speech from a continuous au-
dio stream is quite simple. It makes use of the straightforward idea that sounds being
produced close to the microphone exhibit considerably highenergy levels. Theenergy
valuesof an audio input are provided when working with speech recognition systems
as they extract cepstral coefficients as features from the acoustic signals. The first value
of the cepstral coefficients can be understood as the signal’s logarithmic energy value.
Close speech is detected by first searching for energy valuesthat exceed some upper
threshold. Then, we determine the start and the end-point ofthe segment. Therefore,
we look in forward and backward direction for points where the speech’s energy val-
ues fall below a lower threshold for some time. Note that thisstraightforward approach
can only detect speech carried out close to the microphone. However, this is expressly
aimed for in our application since it provides a simple and robust method to discrim-
inate between utterances of the ”legal speaker” and other nearby speakers as well as
background noise.

3.1 Detailed Description

Examining a sequence of energy values, speech-segments arecharacterized by adjacent
heaps (see Figure 2: E[t]). For our aim of detecting close speech segments we use two
thresholds, namelyTup andTdown. The first thresholdTup mainly serves as a criterion
for detecting a close-speech-segment when some energy values exceed it. Thus,Tup

should be chosen so that for close speech segments some of theheaps are expected to
exceedTup while other segments do not.

After this initial detection, the beginning and the end of the speech segment have to
be determined such that the resulting segment contains all heaps adjacent to the initial
peak. Therefore, starting from the detection point, we proceed in forward and backward
direction. We search for points where the energy value dropsbelow the second threshold
Tdown and does not recover again within a certain amount of time-frames. We thereby
identify the beginning and the end of the speech segment, respectively.Tdown should
be chosen largest so that still all heaps of a close speech section are expected to exceed
it and lowest so that the energy-level of the background noise and most background
sound events do not go beyondTdown. The amount of time-frames given for recover-
ing again represents the maximal distance we allow between two heaps, i.e. between
two consecutive words. We call this thealive-time. We further enhance this approach
by smoothing the sequence of energy levels before processing it and by dynamically
allocating the time to recover from dropping belowTdown.

Smoothing the energy values The energy-value-sequence is smoothed (cf.sm(E, t)
in Figure 2) to prevent punctual variations to take effect onthe detection of speech-
segments and the determination of the alive-time. We compute the smoothed values by
averaging over the current energy-value and the three largest of the previous six energy-
values, i.e. for an energy-sequenceE and time-framet we use the smoothing function:

sm(E, t) =
1

4
· max{E[t] + E[t1] + E[t2] + E[t3] | ti ∈ {t − 1, . . . , t − 6}}.
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(a) Continuous stream with two utterances of interest:
bg-speech– Oh,I forgot my cup! – Should I go an get it for you? –Yes-please! – bg-speech
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(b) First utterance “Oh, I forgot my cup!”
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(c) Second utterance “Yes please!”

Fig. 2: Segmentation of close speech segments

Start/End-point detection The amount of time-frames given to recover from falling
belowTdown is not fixed but is determined dependent on the height of the last heap’s
peak and the distance to this peak. Thus, the closer the peak of the last heap is toTdown,
i.e. the less the confidence is for the last heap being produced by a close speech, the less
time-frames we grant before the next heap must occur (cf. alive-time of right-most heap
in Figure 2(c)). This helps to prevent that background sounds which intersect with the
close-speech segment or directly succeed/precede them andwhich exceedTdown (like
a nearby speech) cause the fixation of the start or end point ofa close-speech segment
to be postponed over and over again. For energy-values greater thanTup we assign the
alive-timeATup, for the valueTdown we assign the alive-timeATdown and for values
betweenTup andTdown we calculate a time-value by linearly interpolating between
ATup andATdown:

alive time(v) =











ATup , v ≥ Tup
ATup−ATdown

Tup−Tdown
· (v − Tdown) + Tdown , Tdown < v < Tup

0 , v ≤ Tdown

After a close-speech segment is detected we proceed in forward/backward direction
(see Figure 2(b) and Figure 2(c)). For each time-framet, we compute the alive-timeat



as the maximum of the value associated with the smoothed energy-valueat(sm(E, t))
and the alive-time value chosen in the previous time-frame minus one (at(t − 1) − 1).
Obviously, when the energy-value-sequence falls belowTdown the alive-time decreases
each time-frame. If0 is reached before the values recover again, we determine thestart
and end point of the close-speech-segment at that frame. As soon as we have determined
the start point of a segment, we can start passing the input tothe decoders. This dras-
tically increases the reactivity of the system. For now, we manually define the actual
thresholdsTup andTdown based on the environmental conditions at a particular site.
We fixedATup at 50 time-frames (500 ms) andATdown at 25 time-frames (250 ms).
These values were determined empirically.

4 Dual Decoding

As mentioned in Section 2.1, in statistical SR-systems the optimization of the posterior
probabilitiesp(w|x) is approached by maximizing the scoresp(x|w) · p(w) where the
likelihoodp(x|w) is given by an acoustical model and the prior probabilityp(w) is pro-
vided by a language model. The set of utterances to recognizein our target application
per task is quite limited and very structured. It can thus appropriately be defined by a
grammar. Consequently, a language model based on a finite state grammar (FSG) seems
most suitable. Even though we assume our CSD already filteredout some undesired in-
put, we are confronted with a high rate of false positive recognitions ofout-of-grammar
(OOG) utterances which we cannot afford and have to take careof. Given an OOG
utterancex, a restricted FSG-based decoder cannot come around to hypothesizex as
an in-grammar(IG) sentencew (or prefixes of it), since the word-sequence probability
for all other sentencesp(w′) is 0 because they are not part of the grammar. This holds
even if we suppose the acoustical probabilityp(x|w) for an IG-sentence to be low. The
acoustical probability mainly plays a decisive role for discrimination between differ-
ent utterancesw from within the language model. A TriGram-based language model
contains many more possible utterances, hence a decoder using such a language model
can also hypothesize those other sentences when it is given an utterance that is OOG
(with respect to the FSG). Unfortunately, it cannot provideus with an accuratebest
hypothesisreliably enough. That is, the correct sentencewx for a given IG-utterance
x will not be the best hypothesis often enough. Otherwise, we could just stay with a
single TriGram-based decoder for recognition. But we can utilize a TriGram language
model to help rejecting OOG utterances hypothesized by the FSG-based decoder. For
this the TriGram has to comprise a larger vocabulary than thespecific grammar and
provide not-too-low probabilities for appropriate combinations of these words, i.e. for
OOG sentences.

Let us consider a false positive recognition where an OOG-utterancex is falsely rec-
ognized as an IG-sentencew by the FSG-based decoder. With an appropriate modeling
of the TriGram we can assume it to provide OOG-sentencesw′ with significant prob-
abilities within its language-model. We can also assume that the acoustical probability
p(x|w′) for thosew′ corresponding to the actual utterance exceed the acoustical prob-
ability of each falsely hypothesized IG-sentencew considerably. So for the TriGram-
based decoding process the comparatively low acoustical probability p(x|w) causes



some words ofw to be pruned away around the corresponding time-frames theywere
hypothesized at by the FSG-decoder. Hence, the word-graph and thus theN -best list
produced by the TriGram-based decoder will not contain the sequencew. On the other
hand, given an IG utterancex and its sentencewx, the comparatively high acoustical
probabilityp(x|w) (in combination with a still sufficiently high language probability)
likely prevents that words ofwx are pruned in the decoding process. Therefore, the
N -best-list will still containwx.

Consequently, we accept the hypothesis of the FSG-based decoder, if it can be
matched with some hypothesis within theN -best list of the TriGram decoder. To not
compare utterances from different instances of time, the matching also takes word-start-
frames into consideration.

4.1 Hypothesis matching

For the matching of the FSG-best hypothesiswFSG with one of theN -best hypotheses
of the TriGramwn, we require that the words ofwFSG occur in the same order inwn.
The difference in the start-frames of the matched words shall not exceed a predefined
maximal offset. For this, we simply iterate through the word-sequencewn. If the current
word of wn matches with the current word ofwFSG (considering the maximal offset
allowed), we proceed to the next word ofwFSG. If all words ofwFSG are processed,
we accept the FSG’s hypothesis. Within this matching, we always omit hypothesized
filler-words likeSILENCE. For some cases, we experienced that an additional heuristics
can improve the acceptance rate. As so, for longer word-sequenceswFSG hypothesized
by the FSG-based decoder it can be reasonable not to require that all words inwFSG

have to be matched on theN -best hypothesis compared to. There is a trade-off between
good acceptance rate and good rejection rate when relaxing the matching. Since we only
want to make sure that the FSG’s hypothesis is not a false positive we argue that enough
evidence is given if the FSG’s and the TriGram’s hypotheses have been similar enough.
Therefore, we allow to skip some words ofwFSG during the matching dependent on the
number of words ofwFSG (e.g. in our application we allow to skip 1 word if|wFSG| ≥
4, skip 2 words if|wFSG| ≥ 6 ...). This can be incorporated very easily in our matching
procedure we explained above.

5 Experimental Evaluation

To evaluate our approach we conducted several experiments on speech input recorded
in the ROBOCUP@HOME environment during a competition. We use a freely available
speaker independent acoustic-model for the SPHINX 3 speech engine build with the
WSJ-corpus [10]. The FSG decoder was run with the specific grammar for the naviga-
tion task shown in Table 1.

The performance of the our dual-decoder systems is influenced by several parame-
ters. We adjusted these in such a way, that the trade-off between higher acceptance-rate
of IG-utterances and higher rejection-rates of OOG-utterances tends to a higher accep-
tance rate. That is because we expect to let pass a fairly low amount of OOG speech-like
utterances in the close-speech detection step already.



command = [ salut ] instruct TO THE location| STOP
salut = ROBOT [ PLEASE ]
instruct = GO| NAVIGATE | DRIVE | GUIDE ME
location = ARM CHAIR| PALM [TREE] | WASTE (BASKET| BIN) | TRASH CAN | UPLIGHT |

REFRIGERATOR| FRIDGE| COUCH| SOFA| PLANT | BOOKSHELF| SHELF|
(COUCH| SIDE | COFFEE| DINNER | DINNING) TABLE | [FRONT] DOOR| LAMP

Table 1: Grammar for the navigation task

(a) Dual decoder

rejectedaccepted
recognized 8.6% 77.6% 86.2%

falsely recognized3.6% 10.2% 13.8%

12.2% 87.8%

(b) error rates and real-time factors
(RTF) for single decoders

WER SER RTF
TriGram-based9.9% 30.7% 0.99

FSG-based4.1% 13.8% 0.24

Table 2: Accuracy and rejection results of dual decoder for legal commands

5.1 Recognition Accuracy

To assess the overall recognition performance of our dual decoder system compared to
a TriGram-only and an FSG-only system, we compiled a set of utterances that are legal
commands of a particular task in the ROBOCUP@HOME domain. The FSG decoder
is using the corresponding grammar of this specific task. TheTriGram decoder in our
dual decoder system uses a language model constructed from all tasks (excluding the
task used for evaluating the rejection of OOG-utterances) of the ROBOCUP@HOME

domain with an additional set of100 sentences of general purpose English. To achieve
best performance the TriGram-only decoder uses a language model constructed from
navigation sentences only.

In our particular evaluation setup we fed723 (20.6 minutes) correct commands from
the navigation task (cf. Table 1) to all three decoders. Table 2 shows the accuracy and
rejection results. For our dual-decoder, we consider an utterance successful if it is recog-
nized correctly and accepted. The recognition rates are based on the FSG decoder while
the rejection rates are based on the matching between the FSG’s hypothesis and the
first 25 entries of the TriGram’sN -best list. In the TriGram-only case, we take the best
hypothesis as the recognition output. The results indicatethat using two decoders in par-
allel yields successful processing. Adding up13.8% of falsely recognized commands
and8.6% of correctly recognized but rejected commands, we receive atotal of 22.4%
of unsuccessfully processed utterances in comparison to30.7% of an TriGram-based
decoder. The sentence-error rate (SER) is a more meaningfulmeasure than the word-
error rate (WER) here, because we are interested in the amountof sentences containing
errors and not in the number of errors per sentence. The10.2% of falsely recognized
but accepted utterances are critical in the sense that they could have caused a false com-
mand to be interpreted. Depending on the application, hypotheses that differ from the
reference spoken can still result in the same command, e.g. ”ROBOT PLEASE GO TO
THE REFRIGERATOR” yields the same command as “DRIVE TO FRIDGE”. To give
an idea about possible proportions, for the dual-decoder onour navigation task half of
the potentially critical utterances (10.2%) are matched on the same command. For the
TriGram-decoder this is the case for one fifth of the30.7% of all sentence errors.24.2%
(overall) are OOG-sentences and thus are not matched to commands at all. To compare



Decoder FPaccepted Error rate on correct commands

Single (FSG only) 93.9% 13.8% (SER)
Single (TriGram only) 16.1% 30.7% (SER)
Dual (FSG+TriGram) 17.7% 13.8% (SER) + 8.6% (falsely rejected)

Table 3: Acceptance rates of false positive (FP) utterances and error rates onlegal commands

the processing speed, we also measured the real-time factor(RTF), i.e. the time it takes
to process a signal of duration1. We achieved an RTF of1.16 for our dual-decoder
system on a Pentium M with1.6 GHz. This is fast enough for our application, since we
are given closed utterances by our CSD front-end and we only decode those. RTFs for
the single-decoder systems (with relaxed pruning thresholds for best accuracy) on the
same machine are listed in Table 2(b).

5.2 Rejection Accuracy

To assess the performance of our dual decoder system in rejecting OOG utterances
(with respect to the FSG) we collected a set of utterances that are legitimate commands
of the ROBOCUP@HOME domain (all tasks) but that do not belong to the specific task
the FSG decoder is using. Please note that this is close to a worst case analysis since
not all of the utterances that make it to the decoder stage in areal setup will be legal
commands at all. In our particular case we took1824 commands (44 minutes) from
the final demonstration task and the manipulation task and fed those commands to an
FSG-only system, a TriGram-only system, and our proposed dual decoder system. All
three decoders had the same configuration as in the recognition setup above. The FSG
decoder for the single case and within our dual-decoder system was using the navigation
task grammar (cf. Table 1). As can be seen in Table 3, the single FSG decoder setup
would have matched over93% of the false positive utterances to valid robot commands.
With our dual decoder approach, on the other hand, the systemwas able to reject more
than82% of those false utterances. With a TriGram-only decoder we would have been
able to reject84%, but this would have come with a prohibitive error rate of more than
30% for correct commands as shown in Table 3 and Table 2(b) already.

6 Conclusion

In this paper, we presented an architecture for a robust speech recognition system for
service-robotics applications. We used off-the-shelf statistical speech recognition tech-
nology and combined two decoders with different language models to filter out false
recognitions which we cannot afford for a reliable system toinstruct a robot. The ad-
vantages of our system in comparison to more sophisticated approaches mentioned are
as follows. It provides sufficiently accurate speech detection results as a front-end for
ASR-systems. Our approach is computationally efficient andrelatively simple to im-
plement without deeper knowledge about speech recognitioninteriors and sophisticated
classifiers like HMMs, GMMs or LDA. It is therefore valuable for groups lacking back-
ground knowledge in speech recognition and aiming for a robust speech recognition
system in restricted domains.



As results are very promising so far, a future issue would be to examine the system’s
performance for far-field speech, that is not using a headset. We imagine this to be
worthwhile especially when we integrate filter methods suchas beam forming for on-
board microphones with sound-source localization [11, 12].
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