
First-Order Strong Progression for Local-Effect Basic Action Theories

Stavros Vassos
Department of Computer Science

University of Toronto
Toronto, ON, M5S 3G4, Canada

stavros@cs.toronto.edu

Gerhard Lakemeyer
Department of Computer Science

RWTH Aachen
52056 Aachen, Germany

gerhard@cs.rwth-aachen.de

Hector J. Levesque
Department of Computer Science

University of Toronto
Toronto, ON, M5S 3G4, Canada

hector@cs.toronto.edu

Abstract

In a seminal paper Lin and Reiter introduced the notion
of progression for basic action theories in the situation
calculus. The idea is to replace an initial database by
a new set of sentences which reflect the changes due to
an action. Unfortunately, progression requires second-
order logic in general. In this paper, we introduce the
notion of strong progression, a slight variant of Lin and
Reiter that has the intended properties, and we show
that in case actions have only local effects, progres-
sion is always first-order representable. Moreover, for
a restricted class of local-effect axioms we show how to
construct a new database that is finite.

Introduction
In this paper, we are concerned with the problem of rea-
soning about the state of a world that changes as the result
of named actions. For such applications, the basic reason-
ing problem is the so-called projection problem: given an
action theory that specifies the preconditions and effects of
actions, and an initial database (DB), determine whether or
not a formula holds after a sequence of named actions is
performed. Two settings where this problem arises naturally
are for planning and for high-level program execution, e.g.
Golog (Levesque et al. 1997).

In practice, there are two ways to deal with projection: we
can progress the initial DB wrt the action sequence and an-
swer the query against the resulting DB; or we can regress
the query wrt the action sequence and answer the resulting
query against the initial DB. Progression has at least two ad-
vantages: First, it avoids a duplication of effort when mul-
tiple queries need to be answered wrt the same action se-
quence, and especially when that sequence is long. Sec-
ond, in a robotics setting, a robot can use its “mental idle
time” to compute a progression while it is busy perform-
ing physical actions. Not surprisingly, virtually all of the
implemented planners (based on STRIPS (Fikes & Nilsson
1971)) perform some form of progression, and many of the
implemented agent programming languages such as Agent0
(Shoham 1993) and 3APL (Hindriks et al. 1999) do as well.
It is typical of these implementations, however, to impose

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

severe restrictions on the form of the initial DB or on the
specifications of the effects of actions. In STRIPS planning,
for example, the initial DB is usually restricted to be a set of
ground literals.

A formal and general definition of progression in the sit-
uation calculus was first proposed by Lin and Reiter (1997).
They showed that their definition correctly captured sim-
ple cases of progression found in many implemented sys-
tems. However, they were also able to prove that there
were cases where the progression of an initial DB formu-
lated in first-order logic required second-order logic. The
need for second-order logic was further justified by Vassos
and Levesque who showed that the straightforward weaker
definition of progression that is always first-order definable
is not correct (2008).

In this paper, we return to the strong notion of progression
defined by Lin and Reiter.1 What we present here are two
major results:

1. for a large class of action theories, called local-effect basic
action theories, we prove that a first-order strong progres-
sion always exists;

2. for a slightly smaller class of action theories, called
strictly local-effect basic action theories, we prove that a
finite first-order strong progression can also be computed.

In the first case, the results hold without restriction on the
form of the initial DB. The second only requires that objects
names are unique. This is the first time to our knowledge
that strong progression is shown to be first-order definable
for an arbitrary first-order initial DB.

The rest of the paper is organized as follows: In the next
section, we begin with a quick review of the situation calcu-
lus including the definition of basic action theories and our
definition of strong progression. Next, we define local-effect
basic action theories and present the first result. Next, we
define strictly local-effect basic action theories and present
the second result. Finally, we discuss some related work and
draw some conclusions, including comments on how the re-
striction to local-effect can be lifted somewhat. Most proofs
can be found in the appendix at the end of the paper.

1As will be explained in the related work section, the formal
definition we use is not quite identical to that of Lin and Reiter. It
is, however, much simpler and cleaner.

Formal Preliminaries
The language L of the situation calculus (McCarthy &
Hayes 1969) is first-order with equality and some limited
second-order features. It is many-sorted, with sorts for ac-
tions, situations, and objects (everything else). A situation
represents a world history as a sequence of actions. The con-
stant S0 is used to denote the initial situation where no ac-
tions have occurred. Sequences of actions are built using the
function symbol do, such that do(a, s) denotes the succes-
sor situation resulting from performing action a in situation
s. We will typically use a to denote a variable of sort action
and α to denote a term of sort action, and similarly s and σ
for situations.

The language includes an infinite number of constant
symbols of sort object that we will typically denote using
letters c, d, e. We assume that L includes a finite number of
situation-independent predicate symbols of sort object and
a finite number of function symbols of sort action. All the
situation-independent symbols take arguments of sort ob-
ject. The language includes a finite number of relational
fluents, that is predicates whose last argument is a situation,
and thus whose value can change from situation to situation.
For simplicity we do not allow L to include functional flu-
ents and function symbols of sort object other than constants
but note that with some extra effort the results presented in
this paper can be proven to hold for the general case. Ac-
tions need not be executable in all situations, and the predi-
cate Poss(a, s) states that action a is executable in situation
s. The language L also includes the binary predicate symbol
@ which provides an ordering on situations. The atom s@s′

means that the action sequence s′ can be obtained from the
sequence s by performing one or more actions in s. We will
use the notation σ v σ′ as a macro for σ @ σ′ ∨ σ = σ′.
Finally, the second-order functionality of L is limited to al-
lowing (non-fluent) predicate variables that take arguments
of sort object.

Often we need to restrict our attention to sentences in L
that refer to a particular situation. For example, the initial
database is a finite set of first-order sentences in L that do
not mention any situation terms except for S0. For this pur-
pose, for any situation term σ, we define the set of uniform
formulas in σ to be all those (first-order or second-order)
formulas in L that do not mention any other situation terms
except for σ, do not mention Poss, and where σ is not used
by any quantifier (Lin & Reiter 1997).

Basic action theories
We will be dealing with a specific kind of L-theory, the so-
called basic action theories. The definition that follows is
the same as in (Reiter 2001) except that, similarly to (Lake-
meyer & Levesque 2004), Dap consists of a single action
precondition axiom for all actions instead of one separate ax-
iom for each action symbol. A basic action theory (BAT) D
over relational fluents F1, . . . , Fn has the following form:2

D = Dap ∪ Dss ∪ Duna ∪ D0 ∪ Dfnd

2For the sake of readability we will be omitting the leading uni-
versal quantifiers.

1. Dap contains a single precondition axiom for all actions
of the form Poss(a, s) ≡ Π(a, s), where Π(a, s) is first-
order and uniform in s.

2. Dss is a set of successor state axioms (SSAs), one for
each fluent symbol Fi, of the form Fi(~x, do(a, s)) ≡
Φi(~x, a, s), where Φi(~x, a, s) is first-order and uniform
in s. SSAs characterize the conditions under which the
fluent has a specific truth value at situation do(a, s) as a
function of situation s. We assume that Φi(~x, a, s) has the
form

γ+
i (~x, a, s) ∨ (F (~x, s) ∧ ¬γ−i (~x, a, s)),

where γ+
i (~x, a, s) and γ−i (~x, a, s) characterize the condi-

tions under which Fi(~x, do(a, s)) becomes true or false
respectively.

3. Duna is the set of unique-names axioms for actions:
A(~x) 6=A′(~y), and A(~x)=A(~y) ⊃ ~x=~y, for each pair of
distinct action symbols A and A′.

4. D0 is a set of first-order sentences uniform in S0. This is
the initial DB that describes what holds in S0.

5. Dfnd is a set of domain independent foundational axioms
which formally define legal situations and @. This is the
only part ofD that includes a second-order sentence of L.

Progression
We now proceed to formally define the notion of a strong
progression. For variant definitions due to Lin and Reiter,
see the related work section.

Let D be a basic action theory over relational fluents
F1, . . . , Fn, as above. Observe that D already tells us what
is known about the situation that results from doing an ac-
tion α in situation S0: D0 tells what is known about S0 and
the successor state axioms tell us how each fluent changes in
going from S0 to do(α, S0). So in a sense,

D0 ∧
n∧
i=1

∀~x. Fi(~x, do(α, S0)) ≡ Φi(~x, α, S0)

is already a progression, except for the fact that it includes
what is known about S0 and so is not uniform in do(α, S0).
The progression we propose below removes the dependency
on Fi(~x, S0) by using second-order quantification over pred-
icates with no situation argument. The resulting sentence
will then be uniform in do(α, S0). More precisely, we have
the following:
Definition 1. Let F1, . . . , Fn be relational fluents, and let
Q1, . . . , Qn be non-fluent predicate variables. For any for-
mula φ in L, let φ〈~F : ~Q〉 be the formula that results from
replacing any fluent atom Fi(t1, . . . , tn, σ) in φ, where σ is
a situation term, by Qi(t1, . . . , tn).

Definition 2. Let D be a basic action theory over fluents ~F
as above, and let α be a ground action term. Then Pro(D, α)
is a second-order sentence uniform in do(α, S0) defined by

∃ ~Q. D0〈~F : ~Q〉 ∧
n∧
i=1

∀~x. Fi(~x, do(α, S0)) ≡
(
Φi(~x, α, S0)〈~F : ~Q〉

)
.

Definition 3. Let D be a basic action theory, α be a
ground action term, and Dα be a set of sentences uniform
in do(α, S0). Dα is a strong progression ofD wrt α iffDα is
logically equivalent to Pro(D, α).3

Although this definition of progression is formulated in
second-order logic, like Lin and Reiter, we are concerned
with progressions that are first-order. It is not hard to see that
in simple cases that are used in practice (such as STRIPS
planning), this definition does the right thing and remains
within first-order logic. For example, suppose we have two
unary fluents, F and G and a single action α that toggles F
and leaves G unchanged. Then, if D0 is

F (c, S0) ∧ G(d, S0),

we get that a progression wrt α is

¬F (c, do(α, S0)) ∧ G(d, do(α, S0)),

as expected. We also get intuitively plausible first-order re-
sults in more general cases. For example, if D0 is

(F (c, S0) ∨ ¬G(c, S0)) ∧
∃x¬F (x, S0),

then a progression wrt α is

(¬F (c, do(α, S0)) ∨ ¬G(c, do(α, S0))) ∧
∃xF (x, do(α, S0)),

again as expected. However, as first shown by Lin and Re-
iter, there are cases of basic action theories where no first-
order strong progression exists.

The important property of strong progression is that it
is able to answer unrestricted queries about all the future
situations that come after do(α, S0) and get the correct an-
swer wrt the original theory D. For example, Pro(D, α) ∪
(D −D0) entails the sentence

∃x∀s(do(α, S0) v s ⊃ ¬F (x, s))

iff D entails it. Note that this sentence is not uniform in any
situation term.

Local-effect BATs
In this paper we restrict our attention to BATs with local
effects similarly to (Liu & Levesque 2005). In particular we
consider BATs where D0 is unrestricted but the axioms in
Dss are such that if an action A(~e) changes the truth value of
the fluent F (~c, s) then ~c must be contained in ~e. The formal
definition of local-effect BATs follows.4

Definition 4. The successor state axiom for Fi is local-effect
if both γ+

i (~x, a, s) and γ−i (~x, a, s) are disjunctions of formu-
las of the form

∃~z(a = A(~y) ∧ φ(~y, s)),
3Note that this definition of progression produces a set of sen-

tences uniform in do(α, S0). To allow a further progression to take
place with another action, it is a simple matter to construct a new
basic action theory, with D0 replaced by a version of the progres-
sion that is made uniform in S0 by simply replacing do(α, S0) ev-
erywhere by S0.

4See the related work section below for a short discussion of
some variant definitions.

where A is an action symbol, ~y contains ~x, ~z corresponds
to the remaining variables of ~y, and φ(~y, s) (called a context
formula) is a first-order formula uniform in s. A basic action
theory D is local-effect if each of the SSAs in Dss is local-
effect.

The following will be our working example.
Example 1. Consider a BAT that represents the dynamics
of narde, a board game similar to backgammon except that
one is forbidden to put his checker at a position occupied
by one’s opponent’s checker. Let L be a language that in-
cludes the fluent board(x1, x2, s) which is intended to repre-
sent that the checker x1 lies at position x2 on the board, and
the action move(y1, y2, y3) which represents the action of
moving checker y1 from position y2 to position y3. Assume
that there is an appropriate definition of Poss that charac-
terizes whether the action move(y1, y2, y3) is executable in
each situation. By the rules of narde it follows that moving
a checker y1 from position y2 to y3 only affects its own po-
sition, provided the action is executable. The SSA for board
is as follows:

board(x1, x2, do(a, s)) ≡ ∃z(a = move(x1, z, x2))∨
¬
(
∃z(a = move(x1, x2, z))

)
∧ board(x1, x2, s).

Note that in this SSA for board, γ+(x1, x2, a, s) is the for-
mula ∃z(a = move(x1, z, x2)), γ−(x1, x2, a, s) is the for-
mula ∃z(a = move(x1, x2, z)), and that the SSA is local-
effect according to the previous definition. The intuition is
that for any ground action of the form move(c, d1, d2) we
can characterize the ground fluents that may be affected by
the action. This will be made precise in the next section.

For local-effect BATs we will show that we can always
find a first-order strong progression, and for a special case
of the local-effect BATs we will show how to construct one
that is finite. We now proceed to present the first result.

A first-order strong progression always exists
for local-effect BATs

We first introduce some necessary notation and then we de-
fine U , a subset of the first-order sentences uniform in s,
whose interpretation remains unaffected when action α is
performed in s. We then define the operator T (G, φ) that
transforms a first-order sentence φ uniform in s while pre-
serving logical equivalence. This operator will play a key
role in proving the main result both of this section and the
following one.

The set of unaffected sentences U
Similarly to (Liu & Levesque 2005), the instantiation of a
local-effect SSA on a ground action term can be simplified
using the unique names axioms for actions, so that it explic-
itly lists a finite number of ground fluent atoms that may be
affected by the action.
Lemma 1. Let α be the ground action term A(~e), where ~e
is a vector of constants in L and suppose that the SSA for Fi
is local-effect. Then γ+

i (~x, α, s) is logically equivalent to a
formula of the following form:

(~x = ~c1 ∧ φ1(s)) ∨ · · · ∨ (~x = ~cm ∧ φm(s)),

where each of the ~c1, . . . ,~cm is a distinct vector of con-
stants contained in ~e, and φ1(s), . . . , φm(s) are first-order
and uniform in s. Similarly for γ−i (~x, α, s).

Example 2. Let α be the ground action move(c, d1, d2).
Then, wrt the SSA for board, γ+(x1, x2, α, s) is logically
equivalent to x1 = c ∧ x2 = d2 and γ−(x1, x2, α, s) is logi-
cally equivalent to x1 = c∧x2 = d1. Note that our example
is a simple one as the formulas γ+ and γ− for board have
no context formulas.

Without loss of generality we assume that for a local-
effect D and a ground action α the formulas γ+

i (~x, α, s)
and γ−i (~x, α, s) have this simplified form. Note also that
all ground actions in L have the form A(~e) where A is some
action function and ~e is some vector of constants in L. The
following definition introduces the notation that we will be
using to specify the ground fluent atoms that may be affected
by a ground action α.

Definition 5. Let D be a local-effect basic action theory, Fi
a fluent symbol in L, and α a ground action. We define the
argument set of Fi wrt α, which we denote as Ci, to be as
follows:

Ci = {~c | ~x = ~c appears in γ+
i (~x, α, s) or γ−i (~x, α, s)}.

We define the characteristic set of α, which we denote as G,
to be the following set of atoms:

G = {Fi(~c, s) | ~c ∈ Ci for some i}.

Example 3. Let α be the ground action move(c, d1, d2).
Then the argument set of board wrt α is {〈c, d1〉, 〈c, d2〉}.
Assuming that board is the only fluent symbol in
L then the characteristic set of α is the set G =
{board(c, d1, s), board(c, d2, s)}.

Note that the sets Ci and G are always finite. The intuition
is that for any fluent atom Fi(~x, s) such that ~x is not equal
to some ~c ∈ Ci, it follows that its truth value remains the
same after action α is performed.5 This is made precise in
the following lemma:

Lemma 2. Let D be a local-effect BAT, α a ground action,
Ci the argument set of Fi wrt α, M a model of D, and µ a
variable assignment. If M,µ |= ~x 6= ~c for all ~c ∈ Ci, then

M,µ |= Fi(~x, do(α, s)) iff M,µ |= Fi(~x, s).

Building on Lemma 2 we now define the set U , a subset
of the first-order formulas uniform in s whose satisfaction in
a model remains unaffected after the action α is performed.

Definition 6. Let D be a local-effect BAT and α a ground
action. We define U as the smallest set such that the follow-
ing conditions hold:

• all first-order situation-independent atoms of L (including
equality atoms) and their negation are in U ;

5Note also that since we have not assumed unique-names for
objects there could be other fluent atoms that may be affected by
α that are not in G. This is not a problem because the set G and
equality are sufficient to characterize all those fluent atoms.

•
∧m
j=1 ~x 6= ~cj ∧Fi(~x, s) and

∧m
j=1 ~x 6= ~cj ∧¬Fi(~x, s) are

in U , where Ci = {~c1, . . . ,~cm} is the argument set of Fi
wrt α, and ~x is any vector of variables;

• U is closed under the logical operators ∧,∨, and universal
and existential quantification over objects.
The following lemma states formally in which sense a for-

mula φ in U remains unaffected wrt s and do(α, s).
Lemma 3. Let D be a local-effect BAT, α a ground action,
M a model of D, µ a variable assignment, and φ(s) a for-
mula in U . Then M,µ |= φ(s) iff M,µ |= φ(do(α, s)).

The operator T (G, φ)
We now proceed to present the operator T (G, φ) that trans-
forms a first-order formula φ uniform in s into a special form
while preserving logical equivalence. T (G, φ) builds a dis-
junctive formula by splitting cases among the finitely many
possible interpretations for the atoms in the characteristic set
of α and simplifying φ for each case into one that remains
unaffected by action α. The simplification step is performed
by the operator V(θ, φ).

Let φ be a first-order formula uniform in s. Without loss
of generality we assume that φ is in negation normal form
(NNF) such that negation is only applied to atoms in φ. We
also assume that every fluent atom in φ has the form F (~x, s)
where ~x is some vector of variables. These assumptions
do not restrict φ as it is well-known that for every formula
there is a logically equivalent one in NNF, and it is also
straightforward that any atom of the form F (~t, s), where ~t
is any set of terms, can be replaced by a formula of the form
∃~x(~x = ~t ∧ F (~x, s)) preserving logical equivalence.

The formal definition of a G-model and V(θ, φ) follows.
Definition 7. Let D be a local-effect BAT, α a ground ac-
tion, G the characteristic set of α, and φ a first-order formula
uniform in s. The sentence θ is a G-model iff it is a conjunc-
tion of literals such that for each F (~c, s) ∈ G there is exactly
one occurrence of F (~c, s) or ¬F (~c, s) in θ, and all atoms in
θ are in G and they appear in θ in lexicographical order. The
operator V(θ, φ) is defined inductively as follows:
• if φ is a first-order situation-independent atom of L (in-

cluding equality atoms) or the negation of one, then
V(θ, φ) = φ;

• if φ is the positive literal Fi(~x, s) then

V(θ, φ) =
m∨
j=1

(~x = ~cj ∧ vj) ∨ (
m∧
j=1

~x 6= ~cj ∧ Fi(~x, s)),

where Ci = {~c1, . . . ,~cm} is the argument set of Fi wrt α,
and

vj =
{

true, if Fi(~cj , s) is a conjunct of θ;
false, otherwise;

• if φ is the negative literal ¬Fi(~x, s) then V(θ, φ) is the
same as above except that Fi(~x, s) and Fi(~cj , s) are re-
placed by the corresponding negative literals;

• for the case of φ ∨ ψ, φ ∧ ψ, ∃xφ, and ∀xφ, the operator
inductively goes into the sub-formulas until it reaches a
literal, for example V(θ,∃xφ) = ∃xV(θ, φ).

The next lemma says that the formula obtained by V(θ, φ) is
in U , that is, it remains unaffected by the ground action α.
Lemma 4. LetD be a local-effect BAT, α a ground action, G
the characteristic set of α, θ a G-model, and φ a first-order
formula uniform in s. Then V(θ, φ) is a formula in U .
Example 4. Let α and G be as in the previous example, and
φ be the formula ∃x1∃x2board(x1, x2, s). Given a G-model
θ we will use V(θ, φ) to simplify φ into a formula in U .
Let θ be the conjunction board(c, d1, s) ∧ ¬board(c, d2, s).
The operator V(θ, φ) simplifies φ according to θ by splitting
cases for each of the fluent literals in φ: if board(x1, x2, s)
unifies with some atom in θ then it replaces board(x1, x2, s)
by its truth value in θ; otherwise if it does not unify with any
of the atoms in θ then it keeps board(x1, x2, s) unaffected.
V(θ, φ) is the following formula:

∃x1∃x2(x1 = c ∧ x2 = d1 ∧ true ∨
x1 = c ∧ x2 = d2 ∧ false ∨

(x1 6= c ∨ (x2 6= d1 ∧ x2 6= d2)) ∧ board(x1, x2, s)).

Observe that the sentence we obtain is in U .
The operator T (G, φ) splits cases wrt all the (finitely

many) possible G-models and uses the operator V to sim-
plify the formula φ according to each one.
Definition 8. Let D be a local-effect BAT, α a ground ac-
tion, G the characteristic set of α, Θ = {θ1, . . . , θl} the set
of all G-models, and φ(s) a first-order formula uniform in s.
We define T (G, φ) as follows:

T (G, φ) =
l∨

k=1

(
θk ∧ V(θk, φ)

)
.

As the following lemma states, the T (G, φ) operator pre-
serves logical equivalence.
Lemma 5. Let D be a local-effect BAT, α a ground action,
G the characteristic set of α, and φ a first-order formula
uniform in s. Let M be a structure of the language and µ be
a variable assignment. Then M,µ |= φ ≡ T (G, φ).

A strong progression based on the first-order
entailments of D
Before we state the main result of this section we need to
prove one more thing. The following lemma relates the
models of two first-order theories that have the same en-
tailments wrt a set of first-order sentences Γ. The lemma
shows that for every model of one theory we can always
find a model of the other such that the two models satisfy
the same set of sentences in Γ. Intuitively this might seem
like an obvious fact but the proof is not straightforward and
involves a non-constructive argument that makes use of the
Compactness Theorem of first-order logic.
Lemma 6. Let Σ1,Σ2,Γ be sets of sentences in L such that
the following conditions hold:

1. Γ is closed under logical conjunction and negation;
2. for all sentences φ in Γ, Σ1 |= φ iff Σ2 |= φ.
For all structures M , if M is a model of Σ1 then there is a
model M ′ of Σ2 such that for all φ in Γ, M |=φ iff M ′ |=φ.

We now state the main result of the section, namely that
when D is local-effect we can always specify a first-order
strong progression.
Theorem 1. Let D be a local-effect BAT with a finite D0, α
be a ground action, and Fα be a set that is logically equiva-
lent to the set
{φ | D |= φ, φ first-order and uniform in do(α, S0)}.

Then Fα is a strong progression of D0 wrt α.
In order to prove this we need to show that Fα is logi-

cally equivalent to Pro(D, α). One direction, namely that
Pro(D, α) |= Fα, is immediate from the following basic
property of strong progression that follows from Theorem 1
and Theorem 2 of (Lin & Reiter 1997):
Lemma 7. Let D be a BAT, α a ground action, and φ a
sentence uniform in do(α, S0). Then,

D |= φ iff Duna ∪ Pro(D, α) |= φ.

The challenging direction is to show thatFα |= Pro(D, α).
The second-order sentence Pro(D, α) expresses that there
exists a configuration for the truth value of the fluents such
that it is consistent with the initial DB and it also respects the
SSAs for the transition from S0 to do(α, S0). Essentially
we need to show that for every model M of Fα there is a
configuration for the truth value of the fluents that qualifies
as a predecessor of the situation do(α, S0). This configura-
tion is expressed using the predicate variables ~Q. Our proof
method relies on Lemma 6 so that to specify a model M ′
of D such that M and M ′ satisfy the same set of first-order
sentences uniform in do(α, S0), and then use this model as
a guideline for specifying an interpretation for ~Q in M . In
order to relate M and M ′ wrt the interpretation of fluents in
S0 and do(α, S0) the operator T (G, φ) is used, taking advan-
tage of its structure and the fact that each of the simplified φ
sub-formulas it consists of are in U and therefore their truth
value in S0 remains unchanged in do(α, S0).

A finite first-order strong progression for
strictly local-effect BATs

In the previous section we showed that a first-order strong
progression always exists for local-effect BATs, but there
were no guarantees that it is a workable one in practice as it
may be infinite. We now turn our attention to a restriction
of the local-effect BATs for which we can always specify a
finite first-order strong progression. Like before, if an action
A(~e) changes the truth value of the fluent F (~c, s) then ~c is
contained in ~e, but we also insist that if the change depends
on the fluent G(~d, s) then ~d is also contained in ~e. More-
over, we assume uniqueness of names for constants. Finally,
for simplicity we assume for this section that L includes no
situation-independent predicate symbols, but note that the
general case can be handled either by extending the defini-
tions that follow or by using relational fluents that do not
change in order to encode these predicates.
Definition 9. The successor state axiom for Fi is strictly
local-effect if both γ+

i (~x, a, s) and γ−i (~x, a, s) are disjunc-
tions of formulas of the form

∃~z(a = A(~y) ∧ φ(~y, s)),

whereA is an action symbol, ~y contains ~x, ~z is the remaining
variables of ~y, and the context formula φ(~y, s) is uniform
in s and such that every fluent atom mentioned in φ(~y, s)
has the form F (~w, s) for some vector of variables ~w and ~w
is included in ~y. A basic action theory D is strictly local-
effect if each of the SSAs in Dss is strictly local-effect and
D includes the set E that consists of the uniqueness of names
axioms for constants.

The definition of a strictly local-effect SSA is exactly the
same with that of a local-effect SSA, except for the restric-
tion that the context formulas in the SSA also have a special
form. With this restriction, given a ground action, a context
formula φ can also be simplified so that it mentions only
ground fluents. Before moving to the next example that il-
lustrates this, observe that the context formula of a strictly
local-effect SSA cannot quantify over the arguments of a
fluent.
Example 5. Consider a BAT that represents the dynamics
of a fantasy world in some role playing game. The agent is
trapped inside a dungeon and in order to get out she has to
unlock the main door. The main door can only be unlocked
by putting a number of levers in the right position and then
pressing a button. Let L be a language that includes the flu-
ent lever(x1, s) which represents that x1 is a lever, the fluent
state(x1, x2, s) which is intended to represent that lever x1

is at state x2, fluent unlocked(s) which represents that the
main door is unlocked, and the action pb which represents
the action of pressing the button. Assume that pressing the
button will unlock the main door provided all the levers are
in state up. The SSA of unlocked(s) is as follows.

unlocked(do(a, s)) ≡
a = pb∧∀w(lever(w, s) ⊃ state(w, up, s)) ∨ unlocked(s).

In this SSA for unlocked, γ−(a, s) is the empty disjunction
and γ+(a, s) is the formula a = pb∧φ(s), where the context
formula φ(s) is ∀w(lever(w, s) ⊃ state(w, up, s)). Here the
vectors ~x, ~y, and ~z are empty according to Definition 4 and
Definition 9. Observe that this SSA is local-effect but not
strictly local-effect since lever(w, s) is mentioned in φ(s)
but w is not included in ~y. Finally, note that in this case
where the domain is intended to be finite, the SSA could be
easily transformed into one that is strictly local-effect by re-
placing the quantified sub-formula by an equivalent one that
explicitly lists the finitely many levers in the world. For ex-
ample, assuming that there are only two levers in the world,
objects c1 and c2, the following is a strictly local-effect ver-
sion of the SSA for unlocked:
unlocked(do(a, s)) ≡
a = pb∧state(c1, up, s) ∧ state(c2, up, s) ∨ unlocked(s).

The instantiation of a strictly local-effect SSA on a ground
action can be simplified so that all fluent atoms that appear
in γi+ and γi− have ground arguments except for the situa-
tion argument, and similarly to the local-effect BATs, a finite
number of ground fluent atoms that may be affected by the
action are explicitly listed.
Lemma 8. Let α be the ground action termA(~e), where ~e is
a vector of constants in L and suppose that the SSA for Fi is

strictly local-effect. Then γ+
i (~x, α, s) is logically equivalent

to a formula of the following form:

(~x = ~c1 ∧ φ1(s)) ∨ · · · ∨ (~x = ~cm ∧ φm(s)),

where each of the ~c1, . . . ,~cm is a distinct vector of constants
contained in ~e, and φ1(s), . . . , φm(s) are uniform in s and
such that all fluent atoms in them have ground arguments of
sort object that are contained in ~e. γ−i (~x, α, s) is logically
equivalent to a similar formula.

Without loss of generality we assume that for a strictly
local-effect D the formulas γ+

i (~x, α, s) and γ−i (~x, α, s) have
this simplified form.
Definition 10. Let D be a strictly local-effect BAT and α
a ground action. We define the context set of α, which we
denote as J , to be the union of the characteristic set G of α
and the set of all fluent atoms F (~c, s) that appear in some
γ+
i (~x, α, s) or γ−i (~x, α, s). A J -model is defined the same

way as the G-model of Definition 7.
Note that J is finite. The intuition behind our progression
mechanism is that we can progress D0 by progressing each
of the possible J -models accordingly.
Definition 11. Let D be a strictly local-effect BAT, α a
ground action, G the characteristic set, J the context set of
α, and θ(s) a J -model. We define the progression of θ wrt
α to be the J -model θ∗ such that:
• for each atom Fi(~c, s) in G, Fi(~c, s) appears positive in θ∗

if Duna ∪ D0 ∪ E ∪ {θ(S0)} |= Φi(~c, α, S0) and negated
otherwise;

• the rest of the atoms inJ appear in θ∗ in the same polarity
as in θ.

Now we can present the second result of this paper.
Theorem 2. LetD be a strictly local-effect BAT with a finite
D0, α be a ground action, and φ(S0) be the conjunction
of all sentences in D0. Let J be the context set of α and
Θ = {θ1, . . . , θl} be the set of all the J -models. Let ψ(s)
be the following sentence:

l∨
k=1

(
θ∗k ∧ V

(
θk, φ(s)

))
,

where θ∗k is the progression of θk wrt α. Then ψ(do(α, S0))
is a strong progression of D0 wrt α.

The proof of this theorem is based on the same ideas as
the one for Theorem 1.

Related Work
The inspiration for our work, and the research most closely
related to it, is that of Lin and Reiter (1997). They give
a model-theoretic definition of progression and show that
when D0 is finite, a progression is always representable us-
ing a second-order formula very similar to ours. We will not
present their definition here,6 but simply use the syntactic
representation instead, which we call LR-progression:

6The definition by Lin and Reiter, which uses models explicitly,
is considerably more complex than ours, but has the advantage that
it also applies when the initial database D0 is infinite.

Definition 12 (LR-Progression).
Let D be a basic action theory over fluents ~F , and let α
be a ground action term. An LR-progression is any set of
sentences uniform in do(α, S0) that is logically equivalent
to Duna conjoined with the following sentence:

∃ ~Q. D0〈~F : ~Q〉 ∧
[
Π(α, S0)〈~F : ~Q〉 ⊃

n∧
i=1

∀~x. Fi(~x, do(α, S0)) ≡
(
Φi(~x, α, S0)〈~F : ~Q〉

)]
.

Note the close correspondence with our definition of strong
progression. In fact, there are only two differences:

1. LR-progression includes Duna while we leave it out. This
is really just a cosmetic difference, as we reinsert Duna as
needed, for example, in Lemma 7.

2. LR-progression includes Π(α, S0)〈~F : ~Q〉, the precon-
dition axiom for α, which is missing from Pro(D, α).
This has to do with an older version of successor state
axioms used by Lin and Reiter. These all had the form
Poss(a, s) ⊃ Fi(~x, do(a, s)) ≡ Φi(~x, a, s). Hence it was
necessary to replace Poss(a, s) by its definition in the pro-
gression. In cases where D0 |= Poss(α, S0), it is easy to
see that Pro(D, α) is actually logically equivalent to the
above sentence.

Reiter subsequently updated the definition of progression in
his (2001) to conform to the new form of successor state
axioms. This new version omits the Π(α, S0)〈~F : ~Q〉 and
so is quite close to ours. Unfortunately, that new definition
has the problem that in certain cases, unintended progres-
sions arise. For example, when D0 is empty, then D0 itself
always counts as a legal progression for trivial reasons. So
with this definition, a BAT can have two progressions that
are not logically equivalent, counter to the claim by Reiter
(2001, Theorem 9.1.2). The same is true for the definition
of progression used in (Claßen et al. 2007).

Other work on progression has looked at various ways of
staying within first-order logic. Liu and Levesque (2005)
proposed a much weaker version of progression that re-
mained first-order definable and computationally tractable.
Vassos and Levesque (2007) considered a less weak pro-
gression but relied on the assumption that there is a finite
domain and a restricted form of disjunctive knowledge in
the initial DB in order to remain first-order and tractable.
Vassos and Levesque (2008) investigated the properties of
another weaker version of progression first proposed by Lin
and Reiter and which is always first-order definable, namely
to let the set Fα of Theorem 1 be the new initial DB. They
proved that this form of progression is useful for answer-
ing a wide range of queries that go beyond those uniform
in some situation term, but cannot be used to construct a
new initial DB without losing information. Our Theorem 1
shows that for local-effect BATs, Fα does not lose informa-
tion. Shirazi and Amir (2005) proposed logical filtering as a
way to progress the initial DB. They do not investigate the
conditions under which progression is first-order definable
but prove that when it is, logical filtering is correct for an-
swering queries uniform in some situation term. Outside of

the situation calculus, Thielscher defined a dual representa-
tion for basic action theories based on state update axioms
that explicitly define the direct effects of each action (1999).

In terms of local effect basic action theories, a slightly
more restrictive definition was first presented by Liu and
Levesque (2005). The difference is that they required the
context formula to be quantifier-free, a constraint not needed
here. A less syntactic version of the constraint also appeared
unnamed in an earlier paper by Lin (2004). For his purposes
(unrelated to progression), he required that for any fluent F
and action symbol A, the following should be an entailment
of the action theory:

¬subset(~x, ~y) ⊃ F (~x, do(A(~y), s)) ≡ F (~x, s)

where subset(~x, ~y), meaning ~x is a subset of ~y, is an abbre-
viation for the following formula:∧

x∈~x

∨
y∈~y

x = y.

Note that our syntactic constraint guarantees these entail-
ments. It remains to be seen whether having these entail-
ments would be sufficient to ensure the existence of first-
order strong progressions.

Recall that a first-order strong progression of an initial
database is a first-order sentence which is equivalent to the
second-order sentence of Definition 2. In a sense this is a
special case of what is called quantifier elimination, which
refers to techniques to transform second-order sentences into
first-order equivalents. Quantifier elimination was first stud-
ied by Ackermann (1935), and a survey of more recent work
on this topic can be found in (Nonnengart, Ohlbach, & Sza-
las 1999). In (Doherty, Lukaszewicz, & Szałas 2001), the
authors apply quantifier elimination to a number of issues re-
lated to progression, including forgetting. One limitation of
this line of work is that completeness results for finding first-
order equivalents exist only for certain classes of formulas.
In contrast, we consider arbitrary initial databases, and the
existence of a first-order strong progression depends cru-
cially on the form of the successor state axioms. It seems un-
likely that general quantifier elimination techniques would
return useful results in such cases.

Conclusion
In this paper we presented two results about the progression
of basic action theories:

1. for local-effect basic action theories, we showed that a
first-order strong progression always exists;

2. for strictly local-effect basic action theories, we showed
that a finite first-order strong progression can also be com-
puted.

This is the first time to our knowledge that strong progres-
sion is shown to be first-order definable for an arbitrary first-
order D0. The first result is general in that we impose no re-
strictions at all on the initial database D0. The second result
is slightly less general as it requires that objects have unique
names. For both results we do, however, require the action
theories to have local effects, which rules out actions like

exploding a bomb, where objects unrelated to the arguments
of the action can be affected by the action.

In future work, we intend to generalize the results pre-
sented here to even less restrictive action theories. We be-
lieve that the real difficulty with progression is not when an
action can affect objects other than its arguments, but rather
when we cannot bound in advance the objects that can be
affected by the action. We hope to define a larger class of
bounded action theories for which it will be possible to con-
struct a first-order strong progression using a technique sim-
ilar to the one presented here.

References
Ackermann, W. 1935. Untersuchung über das elimina-
tionsproblem der mathematischen logik. Mathematische
Annalen 110:390–413.
Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007.
Towards an integration of Golog and planning. In Veloso,
M. M., ed., Proc. of IJCAI-07, 1846–1851.
Doherty, P.; Lukaszewicz, W.; and Szałas, A. 2001. Com-
puting strongest necessary and weakest sufficient condi-
tions of first-order formulas. In Proc. of IJCAI-01, 145–
151.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2:189–208.
Hindriks, K. V.; De Boer, F. S.; Van der Hoek, W.; and
Meyer, J.-J. C. 1999. Agent programming in 3APL. Au-
tonomous Agents and Multi-Agent Systems 2(4):357–401.
Lakemeyer, G., and Levesque, H. J. 2004. Situations, si!
situation terms, no! In Dubois, D.; Welty, C. A.; and
Williams, M.-A., eds., Proc. of KR-04, 516–526.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. Golog: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(1-3):59–83.
Lin, F., and Reiter, R. 1997. How to progress a database.
Artificial Intelligence 92(1-2):131–167.
Lin, F. 2004. Discovering state invariants. In Dubois, D.;
Welty, C. A.; and Williams, M.-A., eds., Proc. of KR-04,
536–544. AAAI Press.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning with
incomplete first-order knowledge in dynamic systems with
context-dependent actions. In Veloso, M. M., and Kamb-
hampati, S., eds., Proc. of IJCAI-05, 639–644.
McCarthy, J., and Hayes, P. J. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence.
Machine Intelligence 4:463–502.
Nonnengart, A.; Ohlbach, H. J.; and Szalas, A. 1999. Elim-
ination of predicate quantifiers. In Ohlbach, H. J., and
Reyle, U., eds., Logic, Language and Reasoning. Essays
in Honor of Dov Gabbay. Kluwer. 159–181.
Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.

Shirazi, A., and Amir, E. 2005. First-order logical filter-
ing. In Veloso, M. M., and Kambhampati, S., eds., Proc. of
IJCAI-05, 589–595.
Shoham, Y. 1993. Agent-oriented programming. Artificial
Intelligence 60(1):51–92.
Thielscher, M. 1999. From situation calculus to fluent cal-
culus: State update axioms as a solution to the inferential
frame problem. Artificial Intelligence 111(1-2):277–299.
Vassos, S., and Levesque, H. 2007. Progression of situation
calculus action theories with incomplete information. In
Veloso, M. M., ed., Proc. of IJCAI-07, 2024–2029.
Vassos, S., and Levesque, H. 2008. On the progression
of situation calculus basic action theories: Resolving a 10-
year-old conjecture. In Proc. AAAI-08. (To appear).

Appendix: Proofs of lemmas and theorems
Lemma 1 Let α be the ground action term A(~e), where ~e is
a vector of constants in L and suppose that the SSA for Fi
is local-effect. Then γ+

i (~x, α, s) is logically equivalent to a
formula of the following form:

(~x = ~c1 ∧ φ1(s)) ∨ · · · ∨ (~x = ~cm ∧ φm(s)),

where each of the ~c1, . . . ,~cm is a distinct vector of constants
contained in ~e, and φ1(s), . . . , φm(s) are first-order and uni-
form in s. Similarly for γ−i (~x, α, s).

Proof Sketch: Let ∃~z(a = A(~y) ∧ φ(~y)) be a disjunct of
γ+
i (~x, α, s). Recall that ~y contains ~x and ~z is the remaining

variables of ~y. By the uniqueness of names for actions it
follows that the disjunct is equivalent to ~x = ~c∧φ(~e), where
~x = ~c is contained in ~y = ~e. �

Lemma 2 Let D be a local-effect BAT, α a ground action,
Ci the argument set of Fi wrt α, M a model of D, and µ a
variable assignment. If M,µ |= ~x 6= ~c for all ~c ∈ Ci, then

M,µ |= Fi(~x, do(α, s)) iff M,µ |= Fi(~x, s).

Proof Sketch: Observe the definition of Ci and the simplified
version of γ+

i (~x, α, s) and γ−i (~x, α, s). Note that M may
satisfy any of the γi formulas only if µ(~x) is the same as the
denotation of some ~c ∈ Ci wrt equality. If this is not the case
then both γ+

i and γ−i are false and the SSA for Fi reduces to
Fi(~x, do(α, s)) ≡ Fi(~x, s). �

Lemma 3 Let D be a local-effect BAT, α a ground action,
M a model of D, µ a variable assignment, G the character-
istic set of α, and φ(s) a formula in U . Then M,µ |= φ(s)
iff M,µ |= φ(do(α, s)).

Proof. By induction on the construction of formulas in U .
We only show the base case since the induction step is
straightforward. When φ(s) does not mention a fluent atom
then φ(s) and φ(do(α, s)) coincide and the lemma follows.
When φ(s) mentions a fluent atom then by the definition of
the set U it follows that φ(s) is a conjunction of an equality
sub-formula of the form

∧m
j=1 ~x 6= ~cj and a fluent literal of

the form F (~x, s) or ¬F (~x, s), where Ci = {c1, . . . , cm} is
the argument set ofFi wrt α.We consider two cases. Case i):
M,µ |= ~x 6= ~c for all ~c ∈ Ci. Then the above equality sub-
formula holds. By Lemma 2 it follows that M,µ |= φ(s) iff
M,µ |= φ(do(α, s)) and thus the lemma follows. Case ii):
M,µ |= ~x = ~c for some ~c ∈ Ci. Then the equality sub-
formula does not hold and the lemma follows. �

Lemma 4 Let D be a local-effect BAT, α a ground action,
G the characteristic set of α, θ a G-model, and φ a first-order
formula uniform in s. Then V(θ, φ) is a formula in U .

Proof. By induction on the construction of first-order uni-
form formulas in s. The base case is immediate from Defi-
nition 7 and the induction step is straightforward. �

Lemma 5 Let D be a local-effect BAT, α a ground action,
G the characteristic set of α, and φ a first-order formula uni-
form in s. Let M be a structure of the language and µ be a
variable assignment. Then M,µ |= φ ≡ T (G, φ).

Proof. By induction on the construction of first-order uni-
form formulas in s. We only show the base case since the
induction step is straightforward. Let Θ = {θ1, . . . , θl} be
the set of all G-models. When φ does not mention a fluent
atom then T (G, φ) is

∨l
k=1(θk∧φ) which is logically equiv-

alent to (
∨l
k=1 θk)∧φ. By the definition of a G-model and Θ

it follows that
∨l
k=1 θk is valid and therefore the lemma fol-

lows. When φ is a fluent literal then it has the form Fi(~x, s)
or ¬Fi(~x, s). We will show the proof for the positive lit-
eral and the other case is similar. First note that by the def-
inition of a G-model and Θ i follows that there is exactly
one θk ∈ Θ such that M,µ |= θk. Therefore in order to
prove the lemma it suffices to show that M,µ |= T (G, φ) iff
M,µ |= V(θk, φ), where M,µ |= θk. Let Ci = {~c1, ...,~cm}
be the argument set of Fi wrt α. Recall that

V(θ, φ) =
m∨
j=1

(~x = ~cj ∧ vj) ∨ (
m∧
j=1

~x 6= ~cj ∧ Fi(~x, σ)),

where vj depends on θk as in Definition 7.
For the (⇒) direction let M,µ |= Fi(~x, σ). We take two
cases. Case i): for all j, µ(~x) 6= ~cj . Then M,µ |=∧m
j=1 ~x 6= ~cj ∧ Fi(~x, σ) and so M,µ |= V(θk, φ). Case ii):

there is a j such that µ(~x) = ~cj . Since M,µ |= Fi(~x, s) it
follows that M,µ |= Fi(~cj , s). By Definition 7 and since
M,µ |= θk it follows that Fi(~cj , s) is a conjunct of θk and
so vj is true. It follows that M,µ |= ~x = ~cj ∧ vj and so
M,µ |= V(θk, φ). The (⇐) direction is similar. �

Lemma 6 Let Σ1,Σ2,Γ be sets of sentences in L such that
the following conditions hold:

1. Γ is closed under logical conjunction and negation;
2. for all sentences φ in Γ, Σ1 |= φ iff Σ2 |= φ.

For all structures M , if M is a model of Σ1 then there is a
model M ′ of Σ2 such that for all φ in Γ, M |=φ iff M ′ |=φ.

Proof. We will do a proof by contradiction as follows. Sup-
pose otherwise. Then there is a model Mc of Σ1 such that
there is no model M ′ of Σ2 so that for all sentences φ in Γ,
Mc |= φ iff M ′ |= φ. Equivalently, there is a model Mc of
Σ1 such that for every model M ′ of Σ2 there is some sen-
tence ψ in Γ so that Mc |= ψ but M ′ 6|= ψ.7 Let ∆ be the
following set: {ψ : ψ ∈ Γ and there is a model M ′ of Σ2

such that Mc |= ψ but M ′ 6|= ψ}.
Clearly ∆ is consistent as Mc |= ∆. Moreover there is

no model M ′ of Σ2 that satisfies ∆ since for each model
M ′ there is at least one sentence ψ in ∆ such that M ′ 6|= ψ.
Therefore Σ2 ∪∆ |= �. By the Compactness Theorem for
first-order logic we get that there is a finite subset of ∆, ∆′,
such that Σ2 ∪ ∆′ |= �. Let γ be the conjunction of all
sentences in ∆′. Then Σ2 ∪ {γ} |= � which implies that
Σ2 |= ¬γ.

Since Γ is closed under logical conjunction and negation,
γ ∈ Γ as it is a conjunction of sentences in Γ and also ¬γ ∈
Γ. By point 2 in the hypothesis Σ1 and Σ2 entail the same

7Note that if instead of this there is a sentence ψ′ in Γ so that
Mc 6|= ψ′ but M ′ |= ψ′ we can just take ψ to be ¬ψ′.

set of sentences in Γ therefore we also get that Σ1 |= ¬γ.
Note that this yields a contradiction because Mc is a model
of Σ1 and Mc satisfies γ. �

Theorem 1 Let D be a local-effect BAT with a finite D0, α
be a ground action, and Fα be a set that is logically equiva-
lent to the set

{φ | D |= φ, φ first-order and uniform in do(α, S0)}.

Then Fα is a strong progression of D0 wrt α.

Proof. We need to show that Fα is logically equivalent to
Pro(D, α). By Lemma 7 it follows that Pro(D, α) |= Fα.
For the other direction we will do as follows. For simplicity
assume that D0 is empty and let M be an arbitrary model
of Fα (we will lift this restriction later). We will specify an
interpretation Ri for each predicate variable Qi by consid-
ering two cases. Let ~o be a vector of objects in the domain
of M of the same arity as ~x, µ be a variable assignment, and
Ci = {c1, . . . , cm} be the argument set of Fi wrt α.

• M,µ~x~o |=
∧m
j=1 ~x 6= ~cj . We define Ri(~o) to be true iff

M,µ~x~o |= Fi(~x, do(α, S0)). The intuition is that these ~o
correspond to fluent atoms that remain unchanged in the
transition from S0 to do(α, S0).

• M,µ~x~o |= ~x = ~cj for some j. For this case we will use a
model of D to guide us. In particular we will use a model
M ′ of D that for every first-order sentence φ uniform in
do(α, S0),

M |= φ iff M ′ |= φ. (1)

Lemma 6 guarantees that we can always find such anM ′.8
We define Ri(~o) to be true iff M ′ |= Fi(~cj , S0). The
intuition is that these ~o correspond to fluent atoms that
may have changed in the transition from S0 to do(α, S0),
and we will make Ri(~o) follow the interpretation of the
fluent in M ′.

Before we continue note that using a similar argument as
in Lemma 3 it is easy to show that for all φ(s) in U ,

M |= φ(do(α, S0)) iff M |= φ〈~F : ~Q〉. (2)

Now we proceed to show that the relationsRi we have spec-
ified qualify as a predecessor of do(α, S0). Since we as-
sumed that D0 is empty we only need to show that for each
of the Fi,

M,µ |= ∀~x
(
Fi(~x, do(α, s)) ≡ Φi(~x, α, s)〈~F : ~Q〉

)
,

where µ interprets s as S0 and each of the predicate variables
Qi as the relation Ri. We will take the same cases again
as follows. Let ~o and Ci be as above, and µ be a variable
assignment that interprets s as S0 and each of the predicate
variables Qi as the relation Ri.

8(1) follows from the foundational result in (Lin & Reiter 1997)
that D − Dfnd is equivalent to D wrt the entailment of first-order
sentences uniform in σ, where here σ is do(α, S0), and the appli-
cation of Lemma 6, where Σ1 is Fα, Σ2 is D − Dfnd, and Γ is the
set of first-order sentences uniform in do(α, S0)).

• M,µ~x~o |=
∧m
j=1 ~x 6= ~cj . By Lemma 1 it follows that

Φi(~x, α, s) reduces to Fi(~x, s), and so Φi(~x, α, s)〈~F : ~Q〉
reduces to Qi(~x). Therefore it suffices to show that
M,µ~x~o |= Fi(~x, do(α, s)) ≡ Qi(~x) which follows from
the way we defined Ri.

• M,µ~x~o |= ~x = ~cj for some j. We need to show that

M,µ~x~o |= Fi(~x, do(α, s)) ≡ Φi(~x, α, s)〈~F : ~Q〉,

or equivalently that

M,µ |= Fi(~cj , do(α, s)) ≡ Φi(~cj , α, s)〈~F : ~Q〉

Let M,µ |= Fi(~cj , do(α, s)). We will show that M,µ |=
Φi(~cj , α, s)〈~F : ~Q〉. Since µ interprets s as S0 it follows
that M |= Fi(~cj , do(α, S0)). By (1) it follows that M ′ |=
Fi(~cj , do(α, S0)) and M ′, µ′ |= Fi(~cj , do(α, s)), where
µ′ interprets s as S0. Since M ′ |= Dss it follows that
M ′, µ′ |= Φi(~cj , α, s). Let G be the characteristic set of
α and Θ = {θ1(s), . . . , θl(s)} be the set of all G-models.
By Lemma 4 it follows that M ′, µ′ |= T (G,Φi(~cj , α, s)).
By the definition of a G-model and Θ it follows that
there is exactly one k such that M ′, µ′ |= θk(s). There-
fore by the definition of the T operator it follows that
M ′, µ′ |= ψ(s), where ψ(s) is V(θk(s),Φi(~cj , α, s)). By
Lemma 5 it follows that ψ(s) is in U and by Lemma 3
it follows that M ′, µ′ |= ψ(do(α, s)). Therefore M ′ |=
ψ(do(α, S0)). By (1) it follows that M |= ψ(do(α, S0))
and M,µ |= ψ(do(α, s)). By (2) it follows that M,µ |=
ψ(do(α, s))〈~F : ~Q〉. Therefore

M,µ |= V(θk(s),Φi(~cj , α, s))〈~F : ~Q〉. (3)

Recall that M ′, µ′ |= θk(s), where µ′ interprets s as S0.
It follows that M ′ |= θk(S0). Since θk(s) is a G-model
it follows that it is a conjunction of literals of the form
F i(~cj , s) or ¬F i(~cj , s), where ~cj is in Ci, the argument
set of Fi wrt α. By the way we defined Ri it follows that

M,µ |= θk(s)〈~F : ~Q〉 (4)

By (3) and (4) it follows that

M,µ |= θk(s)〈~F : ~Q〉 ∧ V(θk(s),Φi(~cj , α, s))〈~F : ~Q〉.

By the definition of the operator T it follows that

M,µ |= T (G,Φi(~cj , α, s))〈~F : ~Q〉.

By Lemma 4 then follows that

M,µ |= Φi(~cj , α, s)〈~F : ~Q〉.

The case where M,µ 6|= Fi(~cj , do(α, s)) is very similar.

Finally, to lift the assumption that D0 is empty we do
the following. Let φ(S0) uniform in S0 be the conjunc-
tion of all sentences in D0. In order to show that M,µ |=
φ(s)〈~F : ~Q〉 we follow the same reasoning as we did to
show that M,µ |= Φi(~cj , α, s)〈~F : ~Q〉 starting from the fact
that M ′, µ′ |= Φi(~cj , α, s), but starting from the fact that
M ′, µ′ |= φ(s) instead. �

