
REVOLVR – RENDERING VOLUME DATA IN VR USING HTC VIVE

Sebastian Suder
sebastian.suder@alumni.fh-aachen.de

Stefan Schiffer
s.schiffer@fh-aachen.de

Ingrid Scholl
scholl@fh-aachen.de

Mobile Autonomous Systems & Cognitive Robotics Institute (MASCOR)
FH Aachen University of Applied Sciences, Aachen, Germany

MASCOR
Mobile Autonomous Systems

and Cognitive Robotics

Direct Volume Rendering (DVR) techniques are used to visualize surfaces from 3D volume
data sets without computing a 3D geometry. Several surfaces can be classified using a
transfer function (TF) by mapping data values to color and opacity (RGBα). To find a good
transfer function is in general a manual and time-consuming procedure and requires detailed
knowledge of the data and the imaging technique. In this poster, a new Virtual Reality (VR)
application ReVolVR is presented. It is based on the HTC Vive VR technique to render and
interact with volume data. ReVolVR loads, modifies and saves the TF in real-time while
continuously rendering the stereoscopic 3D volume through GPU-based ray casting shader.

INTRODUCTION

Ray Casting:
>Ray Casting is a direct volume rendering method.
>Ray Casting traces rays from the camera into the volume and

uses sample values along the ray to compute a volume-rendering integral.
>GPU based ray casting parallelize the computations for each ray [3, 1].

Ray Casting Improvements:
> Empty space skipping.
> Early ray termination: ray traversal can be stopped when the opacity ≥ 1.0.
> To avoid aliasing jitter the entry point from the ray through the fragment pixel.

Algorithm 1: Pseudocode for single-pass
ray casting with pre-integration
Determine volume entry position
Compute ray line and direction
Apply stochastic jittering to ray start position along ray direction
while (Current ray position in volume) AND (opacity < 1.0) do

Access scalar value at current position from volume data
Classify scalar value with 2D pre-integrated transfer function
Compositing of color and opacity
Calculate next sample position along the ray

end

RAY CASTING VOLUME RENDERING

viewer

image
plane

V000

V001

V010

V011

V100

V101

V110

V111

V00

V10

V01

V11

V0

V1

s̃(t)

DICOM data set Voxel data set Sampling s(t)
Trilinear

Interpolation
s̃(t)

Classification
Transfer Function
s̃(t)→ (Csrc, αsrc)

Compositing
(Csrc, αsrc)→
(Cdst, αdst)

Rendering
(Cdst, αdst)

RAY CASTING PIPELINE

Ray Casting Complexity Example:
> Volume Data Size 2563 voxel.
>HTC display resolution 2160× 1020 pixel.
> Sample rate per ray < 256 ·

√
3.

> Approx. 1.15 billion ops per user pose.
>With 24 fps we need over 27.6 billion ops.

Use GPU architecture:
> Implement all needed algorithms with

shaders.
>Using shaders for the parallel raycasting.
>Real-time rendering on every interaction.
>Use high-performance computer with Nvi-

dia GeForce GTX 1080

WHY WE USE THE GPU?

Several user interactions are implemented to
pick, translate and scale the volume data in
the virtual scene. All interactions are designed
to conveniently reflect to real movements of
the user as much as possible.

Head and Controller Tracking:
> The Vive base station tracks sensors from

the headset and controllers.
>Calculate new transformation matrices

with sensor tracked data.
> Apply the transformations and render new

stereoscopic image pairs.

Clipping planes:
>Render three different clipping planes

(transverse / sagittal / coronal planes)
from the original voxel data.

> Toggles on/off the clipping plane rende-
ring.

> Picking only one clipping plane with one
controller.

> Sliding the selected clipping plane by mo-
ving the picking controller.

Volume Transformations:
> Toggles on/off the volume rendering.
> Pick the volume through intersection the

volume with one controller.
> Translate the volume through movements

of the picking controller.
> The volume can be scaled by movement

of both controller.

Transfer Function Editor:
We use our GUI design for the 1D transfer
function (TF) editor (data range on x-axis,
opacity value on y-axis) [4]. Mapping the
GUI image as a texture into the virtual sce-
ne enables the following TF interactions:
> Toggle on/off the transfer function editor.
> Load predefined transfer functions.
>Design interactively a new transfer func-

tion (set color and opacity ranges, define
tent functions).

>Render the volume in real-time with new
visual properties in the virtual scene.

> Save the current transfer function.

Usability:
> In a preliminary evaluation run ReVolVR

was received very well.
>Users felt it was very intuitive to use, even

for technical novices.

1. Menu button

2. Trackpad

3. System button

4. Status light

5. USB charging
adapter

6. Tracking sensor

7. Trigger

8. Grip button
HTC Vive controller [2]

Real scene using the VR application.

Stereoscopic rendering of the ray casting volume.

Blending ray casting volume and clipping planes.

Interactive editing of the transfer function.

VOLUME INTERACTION

Implementation Techniques:
>C++, OpenGL 4.5, GLSL 4.5
> APIs: Qt 5.9, OpenVR 1.0.9,

DICOM-Toolkit (DCMTK) 3.6.2

VolumeView class:
> Initialize the OpenGL context.
>Render the volume and clipping

planes to HTC Vive displays. Software Architecture from ReVolVR.

VolumeReader class:
>Read DICOM or RAW data files
>Create VolumeItem by adding the correct transformation matrix to the volume data.

VR classes:
>Calculate new transformation matrices from tracked head and controller movements.
> Add the transformations to the VolumeItem and render again.

APPLICATION ARCHITECTURE

Summary:
>Developed VR application for volume rendering with the HTC Vive.
> Intuitive interaction with the volume and clipping planes.
> Interactive editing of the transfer function.
>Real-time rendering using GPU based shader algorithms.

Outlook:
> Integrate shading and optimize interactive transfer functions editing.

Further Information:
> some (stereoscopic) example videos can be found on
http://maskor.fh-aachen.de/projects/ReVolVR/

SUMMARY AND CONCLUSION

We would like to acknowledge the Department of Diagnostic and Interventional Radiology,
Nils Krämer and Andreas Ritter, and the Department of Oral and Maxillofacial Surgery, Alex-
ander Bartella, Hannes Bothung and Frank Hölzle, from RWTH Aachen University Hospital,
Germany, for the feedback and discussions, and supporting us with selected clinical data
material.

ACKNOWLEDGEMENT

[1] Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C., Weiskopf, D.: Real-time volume graphics. CRC Press (2006)

[2] HTC: Vive PRE User Guide. http://www.htc.com/managed-assets/shared/desktop/vive/Vive_PRE_User_Guide.pdf (2017),
[Online; accessed 27-July-2017]

[3] Krüger, J., Westermann, R.: Acceleration techniques for gpu-based volume rendering. In: Proceedings of the 14th IEEE Visuali-
zation 2003 (VIS’03). pp. 38–. VIS ’03, IEEE Computer Society, Washington, DC, USA (2003), http://dx.doi.org/10.1109/VIS.
2003.10001

[4] Schubert, N., Scholl, I.: Comparing gpu-based multi-volume ray casting techniques. Computer Science-Research and Develop-
ment 26(1), 39–50 (2011)

REFERENCES


