
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
c© World Scientific Publishing Company

Decision-Theoretic Planning with Fuzzy Notions in Golog

Stefan Schiffer

Knowledge-Based Systems Group

RWTH Aachen University
Aachen, Germany

schiffer@cs.rwth-aachen.de

Alexander Ferrein

FH Aachen University of Applied Sciences

Mobile Autonomous Systems &

Cognitive Robotics Institute
Aachen, Germany

ferrein@fh-aachen.de

In this paper we present an extension of the action language Golog that allows for using
fuzzy notions in non-deterministic argument choices and the reward function in decision-

theoretic planning. Often, in decision-theoretic planning, it is cumbersome to specify the

set of values to pick from in the non-deterministic-choice-of-argument statement. Also,
even for domain experts, it is not always easy to specify a reward function. Instead of

providing a finite domain for values in the non-deterministic-choice-of-argument state-

ment in Golog, we now allow for stating the argument domain by simply providing a
formula over linguistic terms and fuzzy fluents. In Golog’s forward-search DT planning

algorithm, these formulas are evaluated in order to find the agent’s optimal policy. We il-

lustrate this in the Diner Domain where the agent needs to calculate the optimal serving
order.

1. Introduction

The action language Golog14 has proven useful for encoding the high-level be-

haviors of agents or robots (e.g.7,22). With its foundations in the Situation Cal-

culus,15,17 complex behaviors are described in terms of actions with preconditions

and effects. The world evolves from an initial situation due to actions. So-called

fluents (predicates with a situation term as their last argument) are used to keep

track of changes of the properties of the world. Many extensions to the original

Golog dialect have been proposed, for instance, to deal with continuous change,

to allow for probabilistic projections, or for decision-theoretic planning (e.g.2,11,12).

We build on a variant of Golog called Readylog7 which integrates many of the

different dialects into an online interpreter that allows to encode high-level behav-

iors of an agent for dynamic real-time domains. Readylog has shown its usefulness

in applications ranging from robotic soccer to domestic service robots.19,22

One of the features that we found particularly useful to define the behavior of
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an agent or a robot in a flexible way was to use decision-theoretic planning. The

programmer states the different action alternatives and a reward function in order to

select preferred world situations; the optimal policy is then calculated and executed.

Besides this non-deterministic choice of actions, Golog offers a non-deterministic-

choice-of-argument statement. For a finite domain of arguments, an optimal policy

is computed. This is in particular helpful when the agent faces incomplete knowledge

and particular information has to be sensed at run-time. However, to specify the

argument domain is often cumbersome. In this paper, we propose an extension to

Golog that integrates linguistic terms in non-deterministic argument choices and

the reward function for decision-theoretic planning. We show how linguistic terms as

defined in the Fuzzy Logic extension of Golog5,20 are formally integrated into the

forward-search value iteration algorithm used in Readylog. Then, we demonstrate

the extension in the Diner Domain, where a waitron agent has to serve coffee and

dishes as hot as possible. The agent has to decide on which order to deliver first as

the coffee and meals cool down over time. This paper is an updated and extended

version of a workshop paper.18 It brings together our previous contributions on using

linguistic notions in logic-based agent control5,8, 20,21 with the idea of integrating

these linguistic notions in decision-theoretic planning.

The remainder of the paper is organized as follows. In the next section we review

the background of this work, namely Readylog and our Fuzzy Logic extensions

to the Situation Calculus. In Section 3, we bring together the linguistic terms and

decision-theoretic planning and define the respective language constructs formally.

Then, in Section 4, we introduce the Diner Domain and we show the application of

our extension in the same. We conclude with Section 5.

2. Background

In this section we briefly introduce the Situation Calculus and Readylog, showing

the forward-search value iteration algorithm in greater detail. Then, we outline how

Fuzzy sets can be formalized in the Situation Calculus.

2.1. Situation Calculus and Readylog

The Situation Calculus is a second order language with equality which allows for

reasoning about actions and their effects. The world evolves from an initial situation

due to primitive actions. Possible world histories are represented by sequences of ac-

tions. The Situation Calculus distinguishes three different sorts: actions, situations,

and domain objects. A special binary function symbol do : action × situation →
situation exists, with do(a, s) denoting the situation which arises after performing

action a in the situation s. The constant S0 denotes the initial situation, i.e. the sit-

uation where no actions have occurred yet. The state the world is in is characterized

by functions and relations with a situation as their last argument. They are called

functional and relational fluents, respectively. Actions in the Situation Calculus are

characterized by unique names. For each action one has to specify a precondition
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axiom stating under which conditions it is possible to perform the respective action

and an effect axiom formulating how the action changes the world in terms of the

specified fluents.

An action precondition axiom has the form Poss(a(~x), s) ≡ Φ(~x, s). The binary

predicate Poss : action × situation defines the precondition of a particular action.

If Poss evaluates to >, the action can be executed. ~x stands for the arguments of

action a. For instance, for a robot’s move action, the precondition axiom might be

Poss(move(x, y), s) ≡ robotLoc(s) = x saying that the robot can only move from

x to y if its current location is x.a After having specified when it is physically

possible to perform an action, we need to describe how the action changes the

world. In the Situation Calculus, one has to specify negative and positive effects

in terms of the relational fluent F , i.e. ϕ−F (~x, s) ⊃ ¬F (~x, do(a, s)) and ϕ+
F (~x, s) ⊃

F (~x, do(a, s)), respectively. A fluent is a special predicate with a situation term as

its last argument. It can vary from situation to situation and describes a property

of the world in a specific situation. The effect axiom for a functional fluents f is

ϕf (~x, y, a, s) ⊃ f(~x, do(a, s)) = y. However, describing the positive and negative

effect says nothing about those effects which do not change the fluent. The problem

of describing the non-effects of an action is referred to as the frame problem. The

number of frame axioms is very large. For relational fluents there exist in the order

of 2 · A · F frame axioms, where A is the number of actions, and F the number of

relational fluents. McCarthy & Hayes were the first to mention this problem.16

A solution to the problem was proposed with so-called successor state axioms.17

The idea behind these axioms is that, if the truth value of F changes from false

to true from situation s to situation do(a, s), then ϕ+
F (~x, a, s) must have been true.

Similarly, for the second axiom. Reiter shows that under consistency assumptions

for fluents together with the explanation closure axioms, the normal form axioms

for fluent F are logically equivalent to

F (~x, do(a, s)) ≡ ϕ+
F (~x, a, s) ∨ F (~x, a, s) ∧ ¬ϕ−F (~x, a, s). (1)

The above formula is called successor state axiom for the relational fluent F . The

successor state axiom for the functional fluent f has the form:17

f(~x, do(a, s)) = y ≡ ϕf (~x, y, s) ∨ f(~x, s) = y ∧ ¬∃y′.ϕf (~x, y′, a, s) (2)

The background theory for reasoning then is a set of sentences consisting of the

effect axioms Dssa, the action precondition axioms Dap and axioms characterizing

the initial situation DS0
(along with some foundational axioms Σ and a unique

names assumption Duna). It is called a basic action theory (BAT) D. For further

details on the Situation Calculus we refer to Reiter.17 Based on the axioms of the

Situation Calculus, the language Readylog,6,7 our variant of Golog,14 is defined

and borrows ideas from existing extensions to Golog2,4, 11,12,14 and features the

aNote that all logical sentences are implicitly universally quantified.
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nil empty program

α primitive action

ϕ? wait/test action

waitFor(τ) event-interrupt

[σ1;σ2] sequence

if ϕ then σ1 else σ2 endif conditional
while ϕ do σ endwhile loop

withCtrl ϕ do σ endwithCtrl guarded execution

σ1 ||σ2 prioritized execution

withPol(σ1, σ2) prioritized exec. of σ2
prob(p, σ1, σ2) probabilistic exec. of σ1, σ2
pproj(c, σ) prob. projection of prog’s

{proc P1(~ϑ1)σ1 endproc; · · · } procedures

solve(h, f, σ) initiate decision-theoretic optimization
over σ up to a fixed horizon h

σ1 |σ2 non-deterministic decision-theoretic
choice of prog’s

pick(h, ~x, σ) non-deterministic decision-theoretic
choice of arg’s

Figure 1. Some of Readylog’s constructs

constructs given in Fig. 1. Besides standard Golog constructs, Readylog also fea-

tures non-standard constructs such as pproj, where a program is probabilistically

projected into the future, or the non-deterministic decision-theoretic choices of pro-

grams or arguments (“|” and pick, respectively). These constructs are used inside

a solve statement and leave choices open that are filled by the decision-theoretic

forward search algorithm deployed in Readylog which we will explain next. The

other constructs of Readylog are shown in Fig. 1.

As we are extending decision-theoretic planning (DTP) in Golog in this paper,

we now have a closer look at the forward-search DTP algorithm that was proposed

by Boutilier et al.2 The search tree is expanded in a forward direction induced by

the basic action theory. Fig. 2 shows the principle. The nodes in the search tree

are expanded and the values are propagated back to the root. The path with the

highest value represents the optimal policy. As the tree is constructed based on the

basic action theory, it is particularly easy to restrict the search.

2.2. An Example in the Maze Domain

In order to illustrate decision-theoretic planning let us consider a simple example

in a maze domain. It is basically a grid world with several rooms, where a robot

can move around. An example for a maze domain is illustrated in Fig. 3.

Consider an agent in such a maze. To compute a path from its starting position

S to a goal position G it could simply use the program shown in Algorithm 1,

assuming the robot has the following action set A = {go right , go left , go up,
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s0

a1
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p1

s2

a1 a2

p2

V ′0 = p1 · V1 + p2 · V2
a2

s3

a1 a2

p3

s4

a1 a2

p4

V ′′0 = p3 · V3 + p4 · V4
V = max(V ′0 , V

′′
0 )

V1 V2 V3 V4

Figure 2. Decision tree search in Readylog representing a non-deterministic choice of actions.
In each situation si the agent may choose between a1 or a2. The resulting optimal policy is

represented by the branch with maximal value V .

S

G

↑ ↑ ↑
↑ →
→ ↑ ←
↑ ↑ ↑
→ → →
↓ ↓ ↓

↑ ↑ ↑
→ → →
→ ↑ ←
↑ ↑ ↑
→ → →
↓ ↓ ↓

↑ ↑
↑ ↑
↑ ↑
↑ ↑
←

↓ ↓

↑ ↑ ↑
← ← ←
↓ ↓ ↓
↑ ↑ ↑
← ← ←
↓ ↓ ↓

(2, 2)

(7, 5)

Room 1

Room 6

Figure 3. The Maze66 domain from Hauskrecht et al.13

Algorithm 1: Decision-theoretic path planning in Readylog

1 proc navigate

2 solve(h, reward ,while loc 6= goal do

3 (go right | go left | go up | go down)

4 endwhile)

5 endproc

go down}. The actions are stochastic, that is to say that there exists a probability

distribution over the effects of the action. Each of these actions takes the robot

to the intended direction with a high probability, with a low probability it will

end up in an adjacent location. The goal state, position G, has a positive reward

while each other field has a negative reward. Readylog now computes the optimal

policy (shortest path) from the start to the goal employing forward-search DTP.

The forward-search DTP algorithm is implemented in terms of a number of BestDo

predicates. For non-deterministic choices of actions, its formal definition following
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Boutilier et al.2 is:

BestDo((p1 | p2); p, s, h, π, v, pr)
def
=

∃π1, v1, pr1.BestDo(p1; p, s, h, π1, v1, pr1) ∧
∃π2, v2, pr2.BestDo(p2; p, s, h, π2, v2, pr2) ∧
((v1, p1) ≥ (v2, p2) ∧ π = π1 ∧ pr = pr1 ∧ v = v1) ∨
(v1, p1) < (v2, p2) ∧ π = π2 ∧ pr = pr2 ∧ v = v2)

The non-deterministic choice of action arguments is defined as:

BestDo(pick(x, τ, p; p′), s, h, π, v, pr)
def
=

BestDo((p|xc1 | · · · | p|xcn); p′, s, h, π, v, pr)
(3)

Free variables x in the program p are bound to a finite domain τ ; for each “variable

assignment” (denoted by p|xci) a new non-deterministic branch in the forward-search

DTP is added. The policy is hence optimized for all possible variable assignments

leading to the assignment which maximizes the reward function.

2.3. Fuzzy Golog

We introduced the notion of fuzzy fluents in Golog earlier.5,20 Fuzzy fluents extend

“ordinary” functional fluents in that they have a membership relation that defines,

for a number of linguistic fuzzy terms the degree of membership for a particular

function value. In order to make this paper self-contained, in the following we restate

the definitions from our earlier work.5,20

2.3.1. Fuzzy Fluents

We introduce two new sorts to the situation calculus: real and linguistic. We assume

the standard interpretation of reals together with the usual operations and ordering

relations. Linguistic terms are a finite set of constant symbols c1, . . . , ck in the

language. They refer to qualitative classes; examples are close or far. We further

require a unique names assumption for these linguistic categories.

Now, having introduced reals and linguistic terms into the language of the sit-

uation calculus, we can define the degree of membership of a particular value to

a given category. For ease of notation we assume that the domain of a particular

category is from the domain of real numbers. In general, the domain can be defined

arbitrarily.

Definition 1. Let c1, . . . , ck be categories of sort linguistic. We introduce a relation

F ⊆ linguistic × real × [0, 1] relating each linguistic term c of the domain, a real

number, and a degree of membership in the category c as

∀c, u, µu.F(c, u, µu) ≡
(c = c1 ⊃ u = uc1,0 ∧ µu = µc1,0 ∨ · · · ∨ u = uc1,m1

∧ µu = µc1,m1
) ∨ . . . ∨

(c = ck ⊃ u = uck,0 ∧ µu = µck,0 ∨ · · · ∨ u = uck,mk
∧ µu = µck,mk

),
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where all uci,j and µci,j are constants of sort real and µci,j ∈ [0, 1] respec-

tively, i.e. ∀c, u, µu.F(c, u, µu) ⊃ 0 ≤ µu ≤ 1. To ensure that, for each cate-

gory, each pair (u, µu) is unique, we require unique names for linguistic terms:

∀c∃u, µu∀µu′ .F(c, u, µu) ∧ F(c, u, µu′) ⊃ µu = µu′ . We further require one of the

uci,j to equal the centre-of-gravity of the respective category, i.e. uci,j = cog(ci) (cf.

Def. 4). �

Note that the above definition yields a formalization of discrete fuzzy sets. That

means that all value-membership pairs belonging to a particular linguistic category

are enumerated. While we regard a discrete formalization here, the implementation

may make use of a continuous formulation of fuzzy sets. Further note that variables

occurring free in the logical sentences are implicitly universally quantified in the

following definitions.

Definition 2. A fuzzy fluent f is a functional fluent restricted to take only values

from sort linguistic or from sort real. We write f(~x, s) to refer to a fuzzy fluent, and

f(~x, s) to refer to a non-fuzzy fluent. �

2.3.2. Querying a Fuzzy Fluent

To query whether or not a fluent value belongs to a certain category, we introduce,

similar to fuzzy control theory, predicates is, is{, is?, and is⊕. These predicates are

true if a fuzzy fluent value belongs to the category in question to a non-zero degree.

Definition 3.

(1) To query if a fuzzy fluent belongs to a given category, we define the predicate

is ⊆ real × linguistic as

is(f(~t, σ), γ)
.
= ∃u, µu.f(~t, σ) = u ∧ F(γ, u, µu) ∧ µu > 0

(2) Similarly, we define is{ ⊆ real × linguistic, to know if a fuzzy fluent does not

belong to a certain category

is{(f(~t, σ), γ)
.
= ¬∃u, µu.f(~t, σ) = u ∧ F(γ, u, µu) ∨
∃u, µu.f(~t, σ) = u ∧ F(γ, u, µu) ∧ µu < 1.

A fluent value does not belong to a certain category, if either the value in

question is not defined in terms of a fuzzy set, or the value exists and its degree

of membership is less than 1. That is because the standard definition of the

fuzzy complement is given by ¬µu = 1−µu. This evaluates to a non-zero value

for all values of µu less than 1.

(3) For complex queries, for example if a fuzzy fluent value belongs to several

overlapping categories at the same time, we define a predicate is? ⊆ real ×
(linguistic)n for arbitrary n as

is?(f(~t, σ), γ0, . . . , γn)
.
= ∃u, µu,0, . . . , µu,n.f(~t, σ) = u ∧ F(γ0, u, µu,0)

∧ · · · ∧ F(γn, u, µu,n) ∧ (µu,0 ? · · · ? µu,n > 0).
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(4) Similarly, for asking whether or not a fuzzy fluent value belongs to one category

or the other, we introduce the predicate is⊕ ⊆ real × (linguistic)n

is⊕(f(~t, σ), γ0, . . . , γn)
.
= ∃u, µu,0, . . . , µu,n.f(~t, σ) = u ∧ F(γ0, u, µu,0)

∧ · · · ∧ F(γn, u, µu,n) ∧ (µu,0 ⊕ · · · ⊕ µu,n > 0).

�

Next, we need to define a defuzzifier, a function that computes a single numeri-

cal value for a given linguistic category. We need such a defuzzifier because then in

the mechanics underlying our situation calculus machinery we can use crisp repre-

sentatives for our linguistic terms. Note that, while we choose the centre-of-gravity

defuzzifier here, our approach is not restricted to this. Instead, any defuzzifier could

be used just as well. Then, we define a defuzzifying function that selectively applies

the defuzzifier to any linguistic term. This enables us to transparently make use of

linguistic terms since they are transformed to numerical representatives whenever

necessary.

Definition 4. Let τ be a term of Lsitcalc. We define a function defuzz inductively

as:

(1) if τ is an atomic term

(a) and τ is of sort linguistic, then defuzz (τ) = cog(τ)

(b) otherwise defuzz (τ) = τ

(2) if τ is a non-atomic term of the form f(~t) with ~t = t1, . . . , tn,

then defuzz (τ) = f(defuzz (t1), . . . , defuzz (tn))

In defuzz we make use of the function cog, which defines the centre-of-gravity de-

fuzzifier. It is defined as:

cog(c) = û ≡
∃u0, . . . , uk, µu0 , . . . , µuk

.F(c, u0, µu0) ∧ · · · ∧ F(c, uk, µuk
) ∧

u0 6= · · · 6= uk ∧ ∀u∗, µ∗.(u∗ 6= u0 ∧ · · · ∧ u∗ 6= uk ∧
µ∗ 6= µu0

∧ · · · ∧ µ∗ 6= µuk
⊃ ¬F(c, u∗, µ∗)) ∧

û =

k∑
i=0

ui · µui

/ k∑
i=0

µui

�

A fuzzy fluent’s function value is eventually substituted by its defuzzified value

when applying the defuzzifying function defuzz . Note that the number k in the

definition of the centre-of-gravity defuzzifier above refers to the number of all value-

membership pairs defined in the fuzzy set for the linguistic categories plus one value

for each category itself (Def. 1). Further note that the number of value-membership

pairs is required to be finite. As the above definition of a defuzzifier is not closed
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0 1 2 3 4 5 6 7 8 9

robot table

Figure 4. The one-dimensional domestic robot world.

under division in general, note that the definition is however well-defined. This is

because we postulate that the centre-of-gravity for a qualitative category will be

added to the set explicitly. In our implementation, where we make use of continuous

fuzzy sets, this requirement can be dropped, as the set then is closed under division.

By now, we defined fuzzy fluents as a specialization of functional fluents operat-

ing on reals and linguistic terms, introduced qualitative categories as constants of

sort linguistic, and defined a fuzzy set in our domain axiomatization which allows

for defining which values make up a qualitative category to which degree. We can

further query whether or not a fuzzy fluent belongs to a qualitative category. More-

over, we can ask if a fuzzy fluent belongs to several categories at the same time, or

if it belongs to the complementary category. In the next subsection, we will show

how these fluents can be used for reasoning in the Situation Calculus.

2.4. Reasoning with Linguistic Terms: A One-dimensional

Example

To illustrate reasoning with qualitative positional information using linguistic terms

and the representations introduced above, consider the following simple example.

A robot is situated in a one dimensional room with a length of ten metric units

as depicted in Fig. 4. To keep things simple, we restrict ourselves to integer values

for positions in the following. We have one single action called gorel(d) denoting

the relative movement of d units of the robot in its world. For sake of simplifying

the notation in this example, we assume that this action is always possible, i.e.

Poss(gorel(d), s) ≡ >. The action has impact on the fluent pos which denotes the

absolute position of the robot in the world. The position of the table is defined by

the macro postable = p
.
= p = 9. In the initial situation, the robot is located at

position 0, i.e. pos(S0) = 0. We partition the distance in categories close, medium,

and far, and introduce qualitative categories for the position of the robot as back,

middle, and front. We give the (fuzzy) definition of those categories below, where

we use (ui, µui
) as an abbreviation for u = ui ∧ µ = µui

.

For readability reasons, we assume in this example that the robot can only move

around in integer steps. Restricting to integers requires to use an altered version

cog′(c) of the centre-of-gravity defuzzifier formula: cog′(c)
.
= bcog(c)c. Of course our

function defuzz has to mention cog′ instead of cog then. A graphical illustration of

the membership functions for position and distance is given in Fig. 5.
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µ

position0 1 2 3 4 5 6 7 8 9

0.5

1.0

back middle front

(a) Qualitative positions of a robot in a one-dimensional world.

µ

distance0 1 2 3 4 5 6 7 8 9

0.5

1.0
close medium far

(b) Qualitative distance in the one-dimensional world.

Figure 5. Membership functions for position and distance in our one-dimensional robot domain.

F(position, u, µu) ≡
(position = back ⊃ (0, 0.25) ∨ (1, 0.75) ∨ (2, 0.75) ∨ (3, 0.25) ∨ (3/2, 0.5)) ∨
(position = middle ⊃ (3, 0.25) ∨ (4, 0.75) ∨ (5, 0.75) ∨ (6, 0.25) ∨ (9/2, 0.5)) ∨
(position = front ⊃ (6, 0.25) ∨ (7, 0.75) ∨ (8, 0.75) ∨ (9, 0.25)),

while the distances can take the values

F(distance, u, µu) ≡
(distance = close ⊃ (0, 1.0) ∨ (1, 1.0) ∨ (2, 0.75) ∨ (3, 0.25) ∨ (13/12, 0.5)) ∨
(distance = medium ⊃ (3, 0.25) ∨ (4, 0.75) ∨ (5, 0.75) ∨ (6, 0.25) ∨ (9/2, 0.5)) ∨
(distance = far ⊃ (6, 0.25) ∨ (7, 0.75) ∨ (8, 1.0) ∨ (9, 1.0) ∨ (95/12, 0.5)).

Suppose the robot’s position in situation S0 is characterized by the linguis-

tic term back and the table is located at position 9, i.e. DS0
= {pos(S0) =

back, dist(S0) = 9}. Suppose now that the robot travels 4 units to the right. Then

we can show that

D |= is(pos(do(gorel(4), S0)),middle) ∧ is(dist(do(gorel(4), S0)),medium).

Using regression and the successor state axiom for the fluent dist we apply the

centre-of-gravity cog′(back) = 1 if the value of a fuzzy fluent is a linguistic term in

the initial situation. It thus holds in S0 that D |= is(dist(S0), far). By performing
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the action gorel(4) the robot moves four positions to the right. The proposition

holds because pos(do(gorel(4), S0)) = 1 + 4 = 5 and F(middle, 5, 0.75) has a non-

zero membership value. The quantitative distance from 5 to 9 equals 4 units or

medium distance, as is given by F(medium, 4, 0.75).

Suppose now that the robot’s control program contains the action gorel(far)

mentioning the qualitative term far. At which position will the robot end up in

situation s = do(gorel(far), S0)? It follows that

D |= is(pos(do(gorel(far), S0)), front)

i.e. the robot ends up in the front part of its world after executing gorel(far).

Determining the robot’s position in situation do(gorel(far), S0) we again use re-

gression. It is sufficient to show that DS0
|= is(R[pos(do(gorel(far), S0))], front)

which is—according to the successor state axiom above—regressed to pos(S0) =

cog′(back) ∧ F(far, 7, 0.75) ∧ d′ = cog′(far) ∧ is(y = cog′(back) + cog′(far), front) ≡
is(y = 1 + 7, front) ≡ y = 8 ∧ F(front, 8, 0.75) ∧ 0.75 > 0. Hence, we can infer that

the robot ends up at position front.

Assume that apart from gorel(x) there is another action go(x) which makes the

robot move directly to position x. The successor state axiom of go(x) is given as

pos(do(a, s)) = y ≡a = go(x)∧ y = x∨ a 6= go(x)∧ y = pos(s). What happens if we

put in a qualitative category there, i.e. at which position will the robot end up in

situation s = do(go(front), S0)? It turns out that we have

D |= is(pos(do(go(front), S0)), front)

i.e. the robot ends up in the front part of its world after executing go(front).

When regressing a formula that contains a linguistic term, the defuzzification

function (e.g. centre-of-gravity cog′(c)) is applied if the result of a previous suc-

cessor state axiom assigned a qualitative term to the fuzzy fluent. Then, D |=
is(pos(do(go(front), S0)), front) iff DS0

|= is(R[pos(do(go(front), S0))], front) which

is regressed to pos(S0) = cog′(back) ∧ x = front ∧ u = cog′(front) ∧ is(u, front) ≡
is(u = 7, front) ≡ u = 7 ∧ F(front, 7, 0.75) ∧ 0.75 > 0. Thus, it can be inferred that

the robot will end up at position front.

3. Extending DT-Planning in Golog with Fuzzy Notions

One of the convenient features when specifying intelligent agents in Golog is

that the agent designer can leave choices open that the agent then resolves on

its own using an optimization theory. As already mentioned, the choices are the

non-deterministic choice of action and the non-deterministic choice of argument.

The latter is realized by means of the pick statement. It allows for specifying a set

of possible values for a specific fluent for the program in the body of the statement.

That program is evaluated with any of the values from the set.
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Figure 6. The Diner Domain

3.1. Picking from Fuzzy Sets

We now propose to use, instead of a finite set of values, a fuzzy expression to specify

the set of possible values for a fuzzy fluent. We introduce a new predicate pickF

which takes a fuzzy expression instead of the regular set of the classical pick.

The idea is that instead of giving a finite set of variable or fluent values in

the pick statement, the programmer now can state a formula specifying linguistic

categories for a fuzzy fluent. For instance, if we want to optimize the coffee serving

temperature of a waitron agent in a diner cafe (see Fig. 6), we could simply state

to choose a coffee whose temperature is hot. What the pickF statement does is to

translate this into a set of temperatures with positive membership values for the

category hot when served. In our case shown in Fig. 7, this would be translated into

the temperatures 60–80 centigrades. For each of the temperatures, the forward-

search algorithm would try and optimize the respective program attached, say,

serveCoffee(T9) (serve a coffee at table 9) with the pickF statement.
For a single linguistic category we define pickF as

BestDo(pickF(f : γ, p); p′, s, h, π, v, pr)
def
=

∃u1, . . . , uk.∧
u∈{u1,...,uk}

[is(u, γ)] ∧
∨

u∈{u1,...,uk}
[f[s] = u] ∧

∀u′.(u′ 6= u1 ∧ . . . ∧ u′ 6= uk) ⊃ ¬(is(u′, γ)) ∧

BestDo((p|fu1
| · · · | p|fuk

); p′, s, h, π, v, pr)
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Figure 7. Coffee temperature membership function

The intuitive meaning of the above definition is to collect all possible numerical

values of a linguistic category as follows: First, we assume that the is predicate

holds for k numerical values ui of the category γ. Also, the value of our fluent f

must be one of those k values. Then, we make sure that the k values are all values for

which is(·, γ) holds. Lastly, we call BestDo, replacing the fluent f in the program p

with any such value (denoted by p|fui
).b This is analogous to the definition of BestDo

for pick (Eq. 3), where the fluent was replaced with any element of the set τ (cf.

Section 2.1). We give the remaining definitions for the complement of a linguistic

category and for conjunction and disjunction of several linguistic categories below.
If the expression is the complement of a linguistic category we have

BestDo(pickF(f : ¬γ, p); p′, s, h, π, v, pr)
def
=

∃u1, . . . , uk.∧
u∈{u1,...,uk}

[is{(u, γ)] ∧
∨

u∈{u1,...,uk}
[f[s] = u] ∧

∀u′.(u′ 6= u1 ∧ . . . ∧ u′ 6= uk) ⊃ ¬(is{(u′, γ)) ∧

BestDo((p|fu1
| · · · | p|fuk

); p′, s, h, π, v, pr)

For a conjunction of n linguistic categories we have

BestDo(pickF(f : Γ?, p); p
′, s, h, π, v, pr)

def
=

∃u1, . . . , uk.∧
u∈{u1,...,uk}

[is?(u,Γ?)] ∧
∨

u∈{u1,...,uk}
[f[s] = u] ∧

∀u′.(u′ 6= u1 ∧ . . . ∧ u′ 6= uk) ⊃ ¬(is?(u′,Γ?)) ∧

BestDo((p|fu1
| · · · | p|fuk

); p′, s, h, π, v, pr)

where Γ? is an abbreviation for Γ?
def
= γ1∧· · ·∧γn. For the disjunction of n linguistic

bNote that for readability we only use f to refer to a fuzzy fluent. f[s] denotes the fluent f with its

situation argument being restored which we need to determine its value in a particular situation.
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categories we have

BestDo(pickF(f : Γ⊕, p); p
′, s, h, π, v, pr)

def
=

∃u1, . . . , uk.∧
u∈{u1,...,uk}

[is⊕(u,Γ⊕)] ∧
∨

u∈{u1,...,uk}
[f[s] = u] ∧

∀u′.(u′ 6= u1 ∧ . . . ∧ u′ 6= uk) ⊃ ¬(is⊕(u′,Γ⊕)) ∧

BestDo((p|fu1
| · · · | p|fuk

); p′, s, h, π, v, pr)

Γ⊕ is an abbreviation for Γ⊕
def
= γ1∨· · ·∨γn. By the above definitions we provide our

new pickF allowing to specify the argument choice in terms of a fuzzy expressions

for a single fuzzy fluent based on the existing BestDo statements for standard sets.

The idea is to branch over all fluent values for which the fuzzy expression holds in

the resulting non-deterministic choice of action statement having all occurrences of

f replaced by the respective value from the respective fuzzy set.

3.2. Fuzzy Expressions in the Reward Function

As a second way to increase the naturalness of specifying programs for decision-

theoretic planning we introduce a means to use fuzzy expression in the reward

function. We propose a statement fcase that modifies the reward according to a

fuzzy expression, i.e., a single fuzzy category, the complement of a single fuzzy

category, the conjunction of several fuzzy categories and the disjunction of multiple

categories (all for the same fuzzy fluent f).

The fcase statement distinguishes the four above cases and handles them ac-

cording to the following definitions. For a single linguistic category

fcase(f, γ, r) = reward
def
=

is(f[s], γ) ∧ (reward = r) ∨ ¬is(f[s], γ) ∧ (reward = 0)

For the complement of a single linguistic category

fcase(f,¬γ, r) = reward
def
=

is{(f[s], γ) ∧ (reward = r) ∨ ¬is{(f[s], γ) ∧ (reward = 0)

For the conjunction of n linguistic categories

fcase(f, γ1 ∧ . . . γn, r) = reward
def
=

is?(f[s], γ1, . . . , γn) ∧ (reward = r) ∨ ¬is?(f[s], γ1, . . . , γn) ∧ (reward = 0)

For the disjunction of n linguistic categories

fcase(f, γ1 ∨ . . . γn, r) = reward
def
=

is⊕(f[s], γ1, . . . , γn) ∧ (reward = r) ∨ ¬is⊕(f[s], γ1, . . . , γn) ∧ (reward = 0)
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4. An Application in the Diner Domain

As an application domain for our newly introduced extensions we now consider the

Diner Domain, an illustration of which is shown in Fig. 6. In the Diner Domain,

a waitron agent has to decide which of its assigned tables it should serve first in

order to serve coffee and meals as hot as possible. Of course, the longer the distance

for coffee and meals to be served, the cooler the dishes will be when served to the

customer. In our example, the waitron was assigned to serve tables T1 and T9.

In the Diner Domain, we want to serve hot coffee to our customers. The coffee,

however, cools down quickly, depending on how long it takes to deliver the coffee.

This, in turn, depends on the distance between the counter and the table where

the coffee should be served. As an example for a fuzzy set defining the linguistic

terms, we look at a distance relation. Distance in our diner example is understood

as the Manhattan distance between two positions in the diner. We define distances

between 0 and 3 blocks as close, between 3 and 6 as medium, and above 6 as far.

Formally,

F(distance, u, µu) ≡
(distance = close ⊃ (0, 1.0) ∨ (1, 1.0) ∨ (2, 0.75) ∨ (3, 0.25) ∨ (13/12, 0.5)) ∧
(distance = medium ⊃ (3, 0.25) ∨ (4, 0.75) ∨ (5, 0.75) ∨ (6, 0.25) ∨ (9/2, 0.5)) ∧
(distance = far ⊃ (6, 0.25) ∨ (7, 0.75) ∨ (8, 1.0) ∨ (9, 1.0) ∨ (95/12, 0.5)),

where we use (ui, µui) as an abbreviation for u = ui ∧ µu = µui . The fuzzy set for

the coffee temperature is shown in Fig. 7. Note that fuzzy categories can overlap.

For instance, the coffee temperature 62◦C belongs to the category luke as well as to

the category hot. To query whether a value belongs to a certain category, one has

to check if in the respective fuzzy set the value has a positive membership degree

in that particular categorize.

In our distance example above, for instance, we have F(medium, 5, 0.75) to say

that the numerical value 5 has a membership degree of 0.75 for the category medium.

The predicate holds if the degree of membership is greater zero. For complex queries

(logical formulas with fuzzy fluents), we have to define similar predicates is{ for the

complement, is? for the conjunction, and is⊕ for the disjunction of fuzzy fluents.

See5,20 for the formal definitions.

In the Diner Domain, we want to refer to positions in a room in a qualitative

manner. This is why we introduce linguistic categories for the position in X and Y

by the following membership functions:

F(posX, u, µu) ≡ (posX = left ⊃ (1, 1.0) ∨ (2, 1.0) ∨ (3, 1.0) ∧
(posX = center ⊃ (4, 1.0) ∨ (5, 1.0) ∨ (6, 1.0) ∧
(posX = right ⊃ (7, 1.0) ∨ (8, 1.0) ∨ (9, 1.0)).

For the y-coordinate we introduce a fuzzy fluent posY and define the categories

front, middle, back, referring to the tables whose ordinate have a distance of close,
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medium, and far from the Counter. In the next section, we propose an extension to

DTP integrating those linguistic notions.

The coffee is regarded as cold if its temperature lies between 0–50 centigrades, it

is perceived as luke warm between 45 and 65 degrees, hot between 60 and 80 degrees;

above 75 degrees we regard the coffee as veryhot. Despite a negative exponential

cooling rate in reality, we assume a linear rate for the sake of simplicity in this

example. For every 10 seconds we assume that coffee and meals cool down 1 degree.

Traversing a square in the Diner Domain takes the waitron agent 5 seconds. Fig. 6

shows an example. The agent (A) needs 12 actions (r, r, u, u, u, u, u, u, u, u, u,

r) to get to table T9. It takes the agent 60 seconds to reach that table. That means

that a hot coffee at 65 centigrades will be lukewarm when served at table T9. The

deliverCoffee action finally delivers the coffee to the customer, once the right table

has been reached by the agent.

To illustrate the extensions proposed above, consider the following example in

our Diner Domain: The restaurant has several waitron robots and we need to specify

the control program for one of them. Assume the robot is responsible for the tables

located in the corners of the room. Let the position of the tables be composed of

their x and y cell-coordinates. In terms of a linguistic description, we might then

say that the robot needs to serve tables that are in the left or the right part of the

room and that are in the front or the back part of the room. The robot can take

orders for coffee or meals from any of the tables it needs to serve. Assume the robot

has a (finite) list of orders in its world model, each with a number, the table it came

from and the temperature the meal was served with. The individual properties of

those orders can be retrieved via respective functions, where orderi is used to refer

to the order number i. The serving temperature is zero for as long as an order has

not been served.

Writing a program for such an agent includes letting the robot choose which

table to serve in which order. Using decision-theoretic planning, we can specify an

optimization theory by means of a reward function. With our newly introduced

pickF statement we can write a control program in a very straight-forward manner

as given in Alg. 2.

Let us assume that the reward is computed by giving a negative amount for any

open order (i.e. any order that has not been served yet) and by giving a positive

amount for food being served with a high temperature. We can use the newly

introduced fcase statement to specify such a reward function with linguistic terms
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Algorithm 2: Decision-theoretic planning in Readylog for serving a room

with fuzzy argument choice

1 proc serve room

2 navigate(counter);

3 while haveOpenOrder(room) do

4 pickF(posX, left ∨ right ) {
5 pickF(posY, front ∨ back ) {
6 tableWithOpenOrder(table,posX,posY);

7 pickF(mealTemp, luke ∨ hot ) {
8 mealWithTempReady(meal,mealTemp);

9 load meal(meal,tray);

10 bring meal(tray,table);

11 serve meal(tray,table); } } }
12 navigate(counter);

13 endwhile

14 endproc

as follows. For simplicity, we limit ourselves to a list of only two orders.

reward(s) = r
def
=

r = numOpenOrders(s) · (−100) +

fcase(serveTemp(order1, s), hot, 100) +

fcase(serveTemp(order2, s), hot, 100) +

fcase(serveTemp(order1, s), luke, 10) +

fcase(serveTemp(order2, s), luke, 10)

The fuzzy fluent serveTemp returns the temperature at which a meal was served.

Let us assume, the robot has orders from tables T9 and T1. For simplicity we

assume there is no coffee and only one meal to order hence both tables may be

served with the same meal. The robot finds two meals M1 and M2 ready to serve

on the counter with temperatures of 54 and 74 centigrades respectively. If the robot

uses the above program it yields an execution trace as follows.

The first pickF statement has a disjunction as its fuzzy expression. Hence,

we apply the corresponding BestDo definition. That is, by means of the exis-

tential quantifiers we collect those ui (and only those!) for which the predicate

is⊕(ui, left, right) is true. Using the F definition for the posX fuzzy fluent we find six

values, namely 1, 2, 3, 7, 8, 9. Similarly for the second pickF-statement we collect

possible y-coordinates 1, 2, 3, 7, 8, 9. Using the BestDo definition, we replace in the

body of the pickF statement the variables posX and posY by any of the available

values. For each combination we check whether there is a table with an open or-

der at that position with the predicate tableWithOpenOrder. The only positions
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Table 1. Table of possible courses of action with their corresponding reward.

serving serve- serve- total

order temp1 temp2 reward

(M1,T1),(M2,T9) 51 62 120

(M1,T9),(M2,T1) 48 59 20

(M2,T1),(M1,T9) 71 42 110

(M2,T9),(M1,T1) 68 39 110

for which this is true are T1 and T9. For those two tables we continue with the

program, i.e. we do another pickF, now for the fluent mealTemp. Again, using the

BestDo definition for a disjunctive fuzzy expression (hot ∨ luke) we collect a set of

values to replace the fluent mealTemp in the remaining program. In our example

this is the set {45, . . . , 80} as per our specification of the fuzzy sets F for luke and

hot (cf. Sect. 4). Hence, we consider to execute the sequence inside the innermost

pickF for any combination of existing table positions with open orders in the areas

that our robot has to serve, each with any of the meals available with temperatures

from the set {45, . . . , 80} that we have from our BestDo definition. First we check

whether a meal with a given temperature is ready on the counter by the predi-

cate mealWithTempReady. Only if this is the case, we attempt to load the meal,

bring it to a table and serve it. Starting from the initial situation as given above,

from the sets constructed by our BestDo definitions for pickF by means of the two

predicates tableWithOpenOrder and mealWithTempReady what remains for the

innermost program part are for the position (8, 8) and (2, 2), each in combination

with a meal of either 54 or 74 centigrades temperature.

Starting at the counter, we need 12 steps to reach table T9 and 6 steps to reach

table T1. This means, a meal cools down by 12 · 5/10 = 6 centigrades when it

is being delivered to T9 and 6 · 5/10 = 3 when it is being delivered to T1. With

the two orders to serve and two meals to pick from for each we are left with four

courses of action, shown with their reward in Tab. 1. The reward for the course of

actions essentially depends on the temperature that each meal is being served at.

For meals being served with luke temperature the agent receives a reward of 10,

for those being served hot it is rewarded with 100. The most rewarding situation is

reached with first serving table T1 with meal M1, and then delivering M2 to T9. This

yields a total reward of 120. The policy returned for the agent to execute then is

navigate(counter), tableWithOpenOrder(T9, 8, 8), mealWithTempReady(M1, 74),

load meal(M1, tray), bring meal(tray, T9), serve meal(tray, T9), navigate(counter),

tableWithOpenOrder(T1, 2, 2), mealWithTempReady(M2, 54), load meal(M2,

tray), bring meal(tray, T1), serve meal(tray, T1), navigate(counter).

Our newly introduced constructs allow for a seamless integration of linguistic

notions in decision-theoretic planning in agent programs. The agent designer can

use fuzzy expressions both, to specify the set of values to pick from for the non-
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deterministic choice of argument and to specify portions of the reward function that

is used as the underlying optimization theory in decision-theoretic planning.

5. Discussion

In this paper we presented an extension to Readylog that combines fuzzy fluents

and decision-theoretic planning. Fuzzy fluents are fluents that have a membership

function attached. With this function, it can be checked whether or not a fluent

value belongs to the linguistic category in question. In previous work, we defined a

predicate “is” to test this. With this predicate, we can handle negation, conjunction,

and disjunction, respectively, of linguistic terms. With these predicates we can check,

whether a fluent or its complement belongs to a certain category, if a fluent belongs

to one or to another more categories a, or if a fluent is a member of two or more

categories at the same time. The decision-theoretic extension of Golog implements

a forward-search value iteration algorithm and allows to optimize non-deterministic

choices of action or arguments w.r.t. a given reward function. The search for an

optimal policy can be guided by a Golog program to restrict the search space.

Our practical experiences with programming robots with Readylog shows that,

in particular, non-deterministic choices of actions and arguments are very useful

when specifying the behavior of a robot or agent in a flexible way. For the non-

deterministic choice of arguments, the programmer has to give a finite domain from

which the program arguments for computing the optimal policy are evaluated. This

can be a cumbersome process.

In this work, we extend the non-deterministic argument choice such that it

can handle simple fuzzy fluent formulas. This facilitates the specification of the

argument set in pick statements. To this end, we introduced and defined a statement

pickF that translates the values for which the given fuzzy fluent formula holds as an

argument set for the ordinary pick statement. Further, we introduced a statement

fcase which allows to use simple fuzzy fluent formulas in the reward function of

the forward-search value iteration algorithm. The programmer can make use of

linguistic terms and fuzzy categories when assigning rewards to preferred world

situations. We showed the use of the new constructs by an example from the Diner

Domain, where a waitron agent has to find an optimal schedule to serve coffee or

dishes to its customers.

Designing the reward function of a decision-theoretic agent is not an easy task

and requires good domain knowledge. Using fuzzy categories in the reward function

allows for a more natural formulation of the reward function and thus alleviates

its design. Furthermore, they make it more robust against inevitable variations

occuring in the real world as linguistic categories can overlap. This way some form

of hysterisis in taking decisions is possible and may help avoiding oscillations in the

resulting behavior. Our approach changes nothing about the complexity of decision-

theoretic planning per se and hence, does not contribute to making it more scalable.

However, with making the fuzzy notions available to the agent designer we facilitate
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constraining the search space more conveniently since we are using the forward-

search DT planning algorithm.

Our further steps are as follows. So far, we do not allow arbitrary formulas over

fuzzy fluents yet. Enabling such formulas is not as easy because, for example, in

fuzzy logic the excluded middle does not always hold. We will look into possible

realizations of more complex formulas. Furthermore, broadening the application of

linguistic terms in planning to planning with preferences is on our agenda. Here

we want to investigate how our work can be married with the work of Fritz and

McIlraith10 and Bienvenu et al.1 who compile modal logic preference formulas into

Golog programs. Similarly, we will have a look into the works by Finzi and Pirri9

and Cesta et al.3 who use temporal interval planning to solve scheduling problems.
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