
AllemaniACs@Home 2006 Team Description

Alexander Ferrein, Gerhard Lakemeyer, and Stefan Schiffer

Knowledge Based Systems Group
RWTH Aachen,

Aachen, Germany
{ferrein, gerhard, schiffer}@cs.rwth-aachen.de

Abstract. This paper describes how the scientific advances of the Alle-

maniACs soccer team can be applied for the 2006 AllemaniACs@Home

challenge. In contrast to the team description paper for the Allemani-

ACs Mid-Size team, we focus on the low-level robot control software
which allows us to use the same robots and software in the @Home

league as well.

1 Introduction

While in the RoboCup soccer leagues the complexity of the task lies in fast
accessing the sensors, quick decision making and cooperation, the challenge in
the @Home league is to build a system which enables a robot to robustly and
safely navigate through human populated home environments. Since the new
RoboCup@Home league focuses on service robotics applications one main chal-
lenge is that of human-machine interaction. This year, tasks like “follow a human
through the home environment” or “navigate from the fridge to the living room”
will be part of the RoboCup@Home competition.

This means for one that the robot must be able to build an internal represen-
tation for arbitrary home environments. That is because for the competition the
environment that the robot has to operate in is not known in advance. For an-
other, the robot must be able to localize itself in this particular environment and
it has to be able to navigate through it safely. This task surely demands for path
planning and obstacle avoidance abilities. Our Mid-Size robots which we will
also use in the @Home league use a Monte Carlo approach with a laser range
finder for localization. Furthermore, they employ an A∗-based collision avoid-
ance algorithm and a path planner which ensures short paths between reachable
points in the environment.

The high-level control is based on the language Readylog, a variant of the
logic-based language GOLOG [1] which combines explicit agent programming
as in imperative languages with the possibility to reasons about actions and
their effects. In particular, we are interested in decision-theoretic planning in
the Readylog framework which allows to generate optimal plans for complex
tasks.

In the sequel we describe our hardware platform in Section 2. We present
important aspects of our low-level control system in Section 3, before we sketch
the high-level control language Readylog and give an example of a service
robotics application of the AllemaniACs team from the 2004 RoboCup Tech-
nical Challenge in Section 4.

2 AllemaniACs Robots

The hardware platform we will use in the first RoboCup@Home challenge
2006 are those of the AllemaniACS Mid-Size RoboCup Team. The robot has
a size of 39 cm × 39 cm × 40 cm (Fig. 2).
It is driven by a differential drive, the motors
have a total power of 2.4 kW and are origi-
nally developed for electric wheel chairs. For
power supply we have two 12 V lead-gel accu-
mulators with 15 Ah each on-board. The bat-
tery power lasts for approximately one hour at
full charge. This power provides us with a top
speed of 3 m/s and 1000◦/s at a total weight
of approximately 60 kg.
On-board we have two Pentium III PC’s at
933 MHz running Linux, one equipped with a
frame-grabber for a Sony EVI-D100P camera
mounted on a pan/tilt unit and an omnivision
camera. Our other sensor is a 360◦ laser range
finder with a resolution of 1 degree at a fre-
quency of 10 Hz. For communication a WLAN Fig. 1: AllemaniACs Robot

adapter based on IEEE 802.11b is installed.
This platform allows allows the use of the hardware platform for soccer playing,
but it is also possible to use it for service robotics applications.

3 Low-Level Control

Currently we use the 360◦ laser range finder as our main sensor for navigation,
obstacle avoidance, and localization. In the following we describe the respective
modules in greater detail.

3.1 Collision Avoidance and Navigation

The collision avoidance module performs an A∗ search over an occupancy
grid [2] generated from the laser scanner inputs. The robot is positioned in the

Fig. 2: Path to the
target inside a room.

middle (origin) of the grid. Next, the collision-free path
from the current location to a given target point must be
calculated. We perform an A∗ search from the robot’s cur-
rent location to the given target point. If the target point is
located outside the grid range, we project the target point
onto the border of the grid. To alleviate the search we ex-
tend the occupied cells by the size of our robot. Thus, the
robot can be regarded as a mass point. The possible ac-
tions for the search are A = {N, S, W, E, NW, SW, ...}, i.e.
the robot can move to any neighboring cell. To apply A∗

we need to provide a cost function and a heuristic function. The cost function
is the Euclidean distance between grid cells, as heuristic function we use the
Manhattan distance to the target point.
The path A∗ calculates (depicted in Fig. 2) must be translated into motor com-
mands. Thus, we need a curve from which we can derive the appropriate com-
mands sent to the motors. We approximate the steering commands by applying
an A∗ search over the velocity space. This search yields appropriate translational
and rotational velocities with which the robot drives to the given target point.

3.2 Localization

Our self-localization uses of the Monte Carlo Localization algorithm [3]. It works
by approximating the position estimation by a set of weighted samples: P(lt) ∼
{(l1,t, w1,t), . . . , (lN,t, wN,t)} = St. Each sample represents one hypothesis for
the pose of the robot. Roughly, the Monte Carlo Localization algorithm now
chooses the most likely hypothesis given the previous estimate, the actual sensor
input, the current motor commands, and a map of the environment. Fig. 3
shows a global localization on a soccer field. The blue dots represent one sample
of the sample set. In the beginning the robot has no clue about its position and
therefore many hypotheses. After driving around and taking new sensor updates
the robot’s belief about its position condenses to two main hypothesis near the
goals. The robot cannot resolved this ambiguity solely with the laser scanner.

(a) (b) (c) (d)
Fig. 3. Simulated global localization on the RoboCup field. The real position of the
robot is depicted by the gray circle. Because of the symmetry of the environment model,
two clusters have developed.

To be able to localize robustly with the laser range finder we modified the
Monte Carlo approach. To be able to integrate a whole sweep from the LRF
we use a heuristic perception model. With this we are able to localize with high
accuracy in the RoboCup environment. The method is presented in detail in [4].
Our approach, which was inspired by the RoboCup setting, works also very well
for indoor navigation even in large environments.

3.3 Object Classification

For localizing the robot in the environment we build an occupancy grid map
of the environment. With this map, we are able to determine dynamic obstacles
in the environment when new laser readings arrive:
every object which is not represented in the map is
assumed to be a dynamic obstacle. To be able to dis-
tinguish between different dynamic objects, we use the
laser signature of the objects. In the soccer setting we
are able to distinguish between our own robots and op-
ponents, and even humans can be told apart. Though,
the only important information there is whether the
object is a teammate or an opponent obstacle. There- Fig. 4: Identified Objects.

fore, our heuristic for classification is very rough at the moment.
Fig. 4 shows a screenshot of the object classification. The red box shows a clas-
sified Philips robot, the circle shows scan points hat were classified as a human
leg.

4 Readylog

For specifying our high-level control we use a variant of the logic-based high-
level agent programming language GOLOG [1]. GOLOG is a language based
on the situation calculus [5]. Over the past years many extensions like dealing
with concurrency, exogenous and sensing action, a continuous changing world
and probabilistic projections (simulation) [6,7,8] made GOLOG an expressive
robot programming language. We integrated those features in our Readylog

interpreter [9]. For the decision making, we further integrated a planning module
into GOLOG which chooses the best action to perform by solving a Markov
Decision Process (MDP) (we refer to [10] for reading on MDP and to [11] on
integrating MDPs into GOLOG).

The Readylog language features standard constructs like action sequences,
procedures, conditionals, loops, but also less standard constructs like nondeter-
ministic choice of actions, probabilistic projections into the future (simulations),
or decision-theoretic planning are supported. For examples of how a multi-agent
plans for the robotic soccer domain can be formulated in Readylog we refer to
[12,9]. For further extensions of the Readylog interpreter we refer to [13,14].

Recently, we finished our work on a qualitative abstraction of the world model
for the Mid-Size domain [15,16]. The qualitative world model is integrated in
the Readylog language and used for abstract planning. The qualitative world
model provides abstractions for positional information such as left or right as
well as higher-level concepts like that of reachability which is fundamental in
soccer. The qualitative spatial data provided by this world model are based on
human cognition. Thus, they render useful especially when it comes to human-
machine interaction since the robot can handle information which originate from
human language more easily.

(a) Part of the RoboCup 2004
Site in Lisbon

(b) The navigating robot

Fig. 5. Technical Challenge 2004

Readylog Example: RoboCup 2004 Technical Challenge

In the following we give a brief example of Readylog to show that our robot
control software is well suited for service robotics applications. In the RoboCup

Mid-Size Technical Challenge 2004 we presented a service robotics application:
the robot was to drive autonomously to one particular soccer field which was
chosen by one of the referees. The robot calculated the shortest way to the field,
announcing historic sights of the exhibition hall like the stand of the fields or
the pillars of the hall on the way.

Fig. 5(a) shows the occupancy map of the rear part of the exhibition hall. In
the upper part you could detect two of the Mid-Size fields.

proc(pathPlan(Goal , H),
solve(while(not(mapNode = Goal),

pickBest(child , childrenOf(mapNode),
gotoMapNode(child))),

H, beAt(Goal))).

function(beAt(Goal), V , if(mapNode = Goal , V = 100, V = 0)).

proc(gotoMapNode(Node),
[goto global(ownNumber , nodeCoord(Node), 1),
playSound(Node)]).

Fig. 6. The Readylog program for the 2004 challenge.

The high-level control program is shown in Fig. 6. The parameter Goal spec-
ifies the target location. Inside the solve statement the planning takes place: as
long as the robot has not reached the target, it chooses the best neighbor to
the current node in its topological map (which is not shown here) applying the
pickBest statement. The reward function we use here is the beAt function, which

gives a high reward at the target position and 0 otherwise. The cost function for
an action which is also not presented here is defined as the Euclidean distance be-
tween nodes in the topological map. Thus, the robot finds the shortest sequence
of nodes to the target position. At each node the robot calls the gotoMapNode

procedure and plays a sound file to announce the exhibit. Not without pride, we
want to mention that we won the silver medal in the 2004 Technical Challenge
with this demonstration .

References

1. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming 31

(1997) 59–83
2. Moravec, H., Elfes, A.: High resolution maps from wide angular sensors. In: Proc. of

the IEEE International Conference On Robotics and Automation (ICRA). (1985)
116–121

3. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile
robots. In: Proc. of the Int. Conf. on Robotics and Automation (ICRA). (1999)

4. Strack, A., Ferrein, A., Lakemeyer, G.: Laser-based localization with sparse land-
marks. Proc. RoboCup Symposium 2005 (2005)

5. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

6. Giacomo, G.D., Lésperance, Y., Levesque, H.J.: ConGolog, A concurrent program-
ming language based on situation calculus. Artificial Intelligence 121 (2000)

7. Grosskreutz, H., Lakemeyer, G.: cc-Golog: Towards more realistic logic-based robot
controllers. In: Proc. AAAI’00, AAAI Press (2000) 476–482

8. Grosskreutz, H.: Probabilistic projection and belief update in the pGolog frame-
work. In: Second International Cognitive Robotics Workshop. (2000)

9. Dylla, F., Ferrein, A., Lakemeyer, G.: Specifying multirobot coordination in ICP-
Golog – from simulation towards real robots. In: Proc. Physical Agents WS on
IJCAI’03. (2003)

10. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley (1994)

11. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: AAAI’2000. (2000)

12. Ferrein, A., Fritz, C., Lakemeyer, G.: Using golog for deliberation and team coor-
dination in robotic soccer. KI (2005)

13. Ferrein, A., Fritz, C., Lakemeyer, G.: On-line decision-theoretic golog for unpre-
dictable domains. In: Proc. of 27th German Conference on AI. (2004)

14. Ferrein, A., Fritz, C., Lakemeyer, G.: Extending DTGolog with Options. In: Proc.
IJCAI’03. (2003)

15. Schiffer, S., Ferrein, A.: A Qualitative World Model for Autonomous Soccer Agents.
(2006) submitted.

16. Schiffer, S.: A Qualitative Worldmodel for Autonomous Soccer Agents in the
ReadyLog Framework. Master’s thesis, Knowledge-based Systems Group, Com-
puter Science Department, RWTH Aachen University, Aachen Germany (2005)

