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Abstract

This chapter discusses a top-down approach to modelling soccer knowledge, as it
can be found in soccer theory books. The goal is to model soccer strategies and
tactics in a way that they are usable for multiple robotic soccer leagues in the
RoboCup. We investigate if and how soccer theory can be formalised such that
specification and execution is possible. The advantage is clear: theory abstracts
from hardware and from specific situations in different leagues. We introduce
basic primitives compliant with the terminology known in soccer theory, discuss
an example on an abstract level and formalise it. The formalisation of soccer pre-
sented here is appealing. It goes beyond the behaviour specification of soccer play-
ing robots. For sports science a unified formal soccer theorymight help to better
understand and to formulate basic concepts in soccer. The possibility of the for-
malisation to develop computer programs which allow to simulate and to reason
about soccer moves might also take sports science a step further.

∗This research has been carried out within the special research program DFG-SPP 1125Coopera-
tive Teams of Mobile Robots in Dynamic Environmentsand the Transregional Collaborative Research
Center SFB/TR 8 onSpatial Cognition. Both research programs are funded by the German Research
Foundation (DFG). A short and preliminary predecessor of this paper appeared as [1].



1 Robotics and Soccer

In 1997, the firstRoboCup, the international world championship in robotic soc-
cer was held. The event was part of the International Joint Conference on Arti-
ficial Intelligence (IJCAI), and set a new benchmark: the goal of RoboCup is to
foster Artificial Intelligence (AI) and robotics research so that by 2050 a team
of autonomous humanoid robots can be built that will be able to win against the
human soccer world champion [2]. Similar to the goal of beating the human world
champion in chess with a computer, in RoboCup the journey is the reward.

The initiators of RoboCup have chosen soccer as a testbed andcommon research
platform because it covers a wide range of problems from robotics to AI: from
energy supply, creating robust robots, over vision and sensor fusion to coordina-
tion, cooperative multiagent systems, behaviour programming, machine learning,
and strategy acquisition, and many more issues have to be solved until it will be
possible to reach this goal. Soccer is an interesting research problem because it is a
multiagent domain where agents have to cooperate with theirteam-mates and deal
with adversarial agents in real-time simultaneously.

Moreover, during the first years of research in robotic soccer it has already
turned out that soccer playing robots can also be interesting by themselves, because
matches between robots or computer programs can be quite entertaining and excit-
ing – not only for the developers of the respective teams.

1.1 RoboCup Leagues

To place the emphasis on different aspects, a number of leagues have been intro-
duced in the RoboCup. In this section, we will briefly discussthese different
leagues and their particular properties.

Simulation League. The 2D simulation league, one of the first leagues in
RoboCup, concentrates on research in multiagent systems (architectures and coor-
dination mechanisms). Two teams of eleven agents compete ina virtual soccer
match in a real-time, but highly abstracted discrete time simulation. A simulation
server, called Soccer Server [3], receives the action commands from the agents.
Based on these commands it updates the state of the world and dispatches cur-
rent sensory information to each agent in the next simulation cycle. The simulator
also controls the game play. An automated referee judges offsides, throw-ins, and
counts the goals. The frame of reference for sensory inputs and agent commands is
egocentric, i.e. the positions of all visible objects are given as distance and direc-
tion to the respective agent. Besides the visual information, the Soccer Server also
sends aural messages to the player, i.e. a player can send 10 bytes per simulation
cycle, and within a close range around the agent the message may be heard by
other players. By this an unreliable low-bandwidth communication among players
can be realised, which most teams use for exchanging parts ofthe agents’ local
world models. Agents can settle actions by sending one of fivebasic actions back
to the server. These actions aredash, kick, turn, catch(for the goal keeper), and



tackle. Communication is handled with the help of an extrasayaction. In recent
years a more realistic but still abstract 3D simulation has been added which will
soon replace the 2D simulation. This slowly evolves into a simulation of humanoid
robots.

Small-size League. The Small-size league is a robotic league. Five small
wheeled robots play on a field of the size of a table tennis board with a golf
ball. As the robots are too small to carry sensors on-board, aceiling camera is
installed above the field. The camera images are sent to each team. Vision process-
ing extracts the relevant information from the images. To alleviate the recognition,
each player has a special colour coding on top. With these information the actions
that the robots should perform are calculated by a computer off the field. The
actions are sent back to the robots via radio. Thus, the league is partly autonomous.
The research focus here is mainly on image processing and decision making. In
contrast to the other leagues mentioned, player behaviour can be derived from a
global, allocentric world model.

Middle-size League. Here, two teams of up to five fully autonomous wheeled
robots compete on a field of the size8 × 12 m. The robots may have a maximal
size of50×50 cm and the height may not exceed80 cm. The research focus of the
Middle-size league is on robotics, decision making, sensorand actuator systems,
and the integration of software and hardware. Especially inthis league it turns out
that the whole system, hardware as well as software, must form one unit. Only
completely well integrated systems are competitive.

Four-legged League. While in the Small-size and the Middle-size league the
hardware is developed by the participating teams and this development is part of
the research, the Four-legged league aims at developing robot control software on
a common platform. The robots here are Aibo dog robots from Sony. The differ-
ent developments can be well compared as they all work on the same platform.
The capabilities of the robots are limited. It has only a verysmall camera resolu-
tion, the sensor values of the joints in the legs of the dog arebad. Another prob-
lem in this league regarding the hardware platform is that Sony does not provide
too many information about the hardware such that several controllers had to be
reverse-engineered in order to learn how they work. Finallythe quadruped walk
and therefore changing horizon pose difficulties in this league. Another remark-
able thing in this league is that code development is highly distributed. Within
theGerman Team[4] several German universities work on a common code base.
While their respective teams compete against one another in national events, the
most promising approaches are integrated in a national teamthat participates quite
successfully in the RoboCup world cups. Clearly, this is supported by the shared
hardware. Unfortunately, this league will come to an end, asSony stopped the
production of Aibo robots in 2006.



Humanoid League. The ultimate goal of the RoboCup initiative is to play
(robotic) soccer with humanoid robots. Of course, researchon human-like robots
must be conducted in order to achieve this goal. The humanoidleague exists for
three years now and has already made remarkable progress since then. In the begin-
ning, the competitions only were so-called technical challenges, where the teams
showed the capabilities of their robots. Today, there are already soccer matches
two-on-two. There exist two different sub-leagues based onthe sizes of robots, the
so-called Kid-size league and the Teen-size league. In the Kid-size league robots
with a height from30 cm to60 cm compete while a typical Teen-size robot mea-
sures between65 cm and130 cm, although in special cases robots up to180 cm
may participate in this league.

Non-soccer leagues. In order to address robotic and AI related problems not
covered by the soccer-playing robots scenario, additionalRoboCup competitions
have been created: the RoboCup@Home and the RoboCup Rescue leagues. In
the former, robots should fulfil helper tasks in human home environments. In the
latter autonomous agents and robots have to solve large and small scale rescue
tasks, namely coordinating rescue teams in a (simulated) earthquake scenario and
rescuing entombed people from an urban disaster area.

1.2 Challenges in Robotic Soccer

Participating in RoboCup, one faces a variety of problems inorder to enable the
robots to play soccer. Some of the problems are purely related to robotics: one has
to deal with sensors and actuators, making the robot run. Other aspects are related
to software design accounting for the real-time aspects of the soccer domain. The
software system must be designed in such a way that sensor information coming
in with high frequency can be processed promptly. Upon thesedata the robot
must decide on appropriate actions likekickingor dribbling and compute the cor-
responding actuator commands. Further problems like navigation, collision avoid-
ance, and localisation have to be solved. Beyond these problems it comes to the
question how the processing from sensor inputs to actuator output is designed.
State of the art for soccer robots are so-called reactive systems. Usually the robots
make up a model of the accessible world from their sensor data. Such a world
model contains data like the own position on the field, the position of the ball, and
the positions of opponents perceived. In a reactive system,a particular configura-
tion of the world state, i.e. a configuration of world model variables, are mapped
to an action the robot can take. In reactive systems, the occurrence of certain
variable values is mapped directly onto a specific action without considering what
happened in the past. These actions are rather complex actuator signal sequences.
For an intercept action, for example, the system has to take into account the posi-
tion of the ball, its velocity, and the relative direction toit to set appropriate motor
commands such that the ball is finally in the gripper of the robot.

At this stage of development the designer of such a robot system has to think
about how the behaviour of the robot should be set up. As laid out before, one



possibility is to directly couple sensors and actuators (possibly via a world model
representation). The system designer now has to think aboutthe abilities the robots
have and she has to think about how soccer is played. With a soccer robot and its
restricted abilities, currently, the behaviours are quitesimple: usually, one robot
captures the ball, dribbles towards the opponent goal and tries to score.

1.3 Learning from Human Soccer

Keeping in mind the RoboCup vision, only utilising such simple behaviour pat-
terns is not sufficient. One has to think about how humans playsoccer. What are
the different moves, strategies, and tactics? Clearly, a humanoid robotic system
must be able to perform moves that are as sophisticated as theones used by human
soccer teams in order to be competitive.

That is why we started investigating human soccer theory to learn more about
the core of soccer in [1]. The aim of this joint research with background in different
RoboCup leagues was to come up with a general theory of soccerfor robots. We
approached building this theory by investigating existingsoccer literature to work
out formal aspects of soccer. Particularly, we looked at a textbook by Lucchesi [5].
In this book soccer moves are described by diagrams containing important player
positions. Several actions likedribble or moveare depicted with arrows pointing
to other positions on the pitch. In most of the diagrams the positions of opponent
players are left out. This is due to the abstract character ofthe representation. To be
able to understand the idea of the moves a common soccer ontology is assumed. In
general, humans are very good in understanding such abstract qualitative represen-
tations. In brief, qualitative knowledge is obtained by comparing features within
the object domain rather than by measuring them in terms of some artificial exter-
nal scale. Thus, qualitative knowledge is relative knowledge where the reference
entity is a single value rather than a whole set of categories[6]. Though, for a
robot these representations do not help at first. The diagrams have to be translated
into a formal, mathematical description of the scene beforea robot could perhaps
make use thereof. It starts with fixing an ontology for soccerdefining, for exam-
ple, what it means for a player to be a defender or an attacker.Furthermore, the
spatial relations used within the descriptions have to be defined. The questions to
be answered here are for example: in which situation is a soccer move applicable,
or when can a pass be played to a teammate, and finally, how can the sequence of
actions of the soccer move be formally described.

1.4 Overview of the Rest

This chapter is about the ongoing work to formalise soccer theory for the behaviour
specification of soccer robots. The future direction we posehere is to come to a
formal description of soccer. Beyond robotic soccer it could help to better under-
stand soccer, to be able to better analyse soccer, and to simulate soccer moves with
a computer program.



The chapter is organised as follows. In Section 2 we sketch the specification
language Readylog and motivate spatial relations we use forformalising soccer
theory. In Section 3 we introduce soccer moves as given by Lucchesi in [5], deriv-
ing the soccer ontology and the building blocks for soccer interms of actions and
their preconditions. We also present a robotic soccer example and show how ele-
ments of soccer theory can be adapted to soccer robots. Here,we also sketch the
qualitative world model we defined in order to describe important regions on the
soccer pitch. We conclude with a discussion of the related work and a perspective
outlook on this work (Section 4).

2 Theoretical Background

In this section we briefly introduce the languageReadylogwhich we use for the
behaviour specification and programming of our soccer robots. This language is
a formalism for combining robot programming with planning.It is also very well
suited to formalise the soccer domain. We start with an introduction to the situa-
tion calculus, that is the formalism which Readylog is basedon. Then we give an
overview of Readylog and the different programming constructs which are avail-
able. We leave out the formal definition of the language constructs. It is important
to note that a formal semantics for the language exists, i.e.the execution of pro-
grams of Readylog is not dependent on a particular implementation, which makes
it very well suited to formalise soccer theory. In the rest ofthis section, we explain
spatial relations that are needed for a formalisation of soccer theory.

2.1 Situation Calculus

The situation calculus [7, 8] is a logical second-order language proposed by John
McCarthy in 1963. It allows us to reason about actions and change. The world
evolves from an initial situation due to primitive actions.Possible world histories
are represented by sequences of actions. The situation calculus distinguishes three
different entities:actions, situations, and domain dependentobjects. There exists
a special binary functiondo(a, s) which denotes the situation that arises after per-
forming actiona in situations. The constants0 denotes the initial situation, i.e. the
situation where no actions have occurred yet.

The state of the world is characterised by relations and functions with a situation
term as their last argument. They are calledrelational and functionalfluents. As
an example consider a robot lifting an object. The fluentholding(s) describes
whether the robot has lifted the object and holds it in its gripper. In the initial
situations0 the robot has not picked up the object, thusholding(s0) is false. Now
the robot performs the actionpickup(object). The situation describing the new
state of the world iss1 = (do(pickup(object), s0). The effect of the action can be
described in terms of the fluentholding. It should hold that after performing the
pickup action the fluent

holding(do(pickup(object), s0)) ≡ true,



i.e. the robot has lifted the object and holds the object in its gripper. What is needed
to make this true is a so-called effect axiom which describesthe effects of the
actionpickup. A possible effect of this action is

holding(object, do(pickup(object, s)).

This means that if the robot performs the action pickup, it follows that in the suc-
cessor situationdo(pickup(object, s)) the fluentholding(object) becomes true.
What is further needed is a set of axioms which describe when anaction is pos-
sible. For our pickup action a precondition could be that thebox must not be too
heavy, or expressed formally

Poss(pickup(object), s) ≡ ¬heavy(object, s).

Poss is a predicate which denotes the possibility to execute an action in a par-
ticular situation. Summarising the basic ingredients of the situation calculus, one
specifies a formal theory defining fluents, actions, their preconditions, and their
effects. Now, one can reason, for example, if at some state ofthe world after per-
forming a sequence of actions, particular properties of theworld are true or false.
With this formalism one can easily simulate sequences of actions and find out how
the world looks like afterwards. We only briefly sketched thesituation calculus.
For a thorough discussion about the situation calculus we refer to the textbook
written by Reiter [8].

2.2 Readylog

Readylog [9, 10] is a variant of Golog [11] which is based on Reiter’s variant of
the situation calculus [7, 8] as described above. We will very briefly sketch the
constructs of Readylog in the following. The originalGologevolved to an expres-
sive language over the recent years. It has imperative control constructs such as
loops, conditionals, and recursive procedures, but also less standard constructs
like the nondeterministic choice of actions. Extensions exist for dealing with con-
tinuous change [12] and concurrency [13], allowing for exogenous and sensing
actions [14] and probabilistic projections into the future[15], or decision-theoretic
planning [16] which employs Markov Decision Processes (MDPs).

Readylog integrates these extensions in one agent programming framework [9,
10]. For specifying the behaviour of an agent or robot the following constructs
exist:

1. sequence:(a; b)
2. nondeterministic choice between actions:(a|b)
3. nondeterministic choice between action arguments:pickBest

4. MDP solving:solve(p, h),
p is a Golog program,h is the MDP’s solution horizon.

5. test actions:?(c)
6. event-interrupt:waitFor(c)
7. conditionals:if (c, a1, a2)



8. loops:while(c, a1)
9. condition-bounded execution:withCtrl(c, a1)

10. concurrent execution of programs:(p1||p2)
11. probabilistic actions:prob(valprob, a1, a2)
12. probabilistic (offline) projection:pproj (c, a1)
13. procedures:proc(name(parameters), body)
To encode the behaviour one has to give a domain axiomatisation including the

actions the robot can perform together with their effects, and the fluents which
describe the properties of the world, e.g. the ball position. Examples of domain
descriptions for the soccer domain can be found in [17, 18].

2.3 Spatial Relations

In contrast to formal descriptions of (soccer) knowledge bymeans of mathematical
equations or the situation calculus and their derivatives,human representations
of soccer are as such qualitative. Distances between players on the pitch are, of
course, never quantitatively represented or perceived by human players. A player
would never express: I have to play the pass when my team-matehas a distance
of exactly 2.35 m and she is at an angle of 48◦ to me. This is one of the problems
when trying to transfer the human soccer theory to soccer robots. Adequate human-
readable models have to be found in order to be able to transfer human expert
knowledge to a robot. In the following, we list some basic spatial categories.

Distance and Orientation. The basic notion needed for describing soccer moves
is a notion of space and distance. The approach described in [19] is based on [20,
21]. We started with an egocentric relation of distance. Onedefines a metric for
IR1, builds equivalence classes for ranges ofIR1 and assigns constants likenear
or far to each class. To build the orientation relation we build equivalence classes
over ranges of angles. Each sector is assigned an orientation like with a compass
rose. We use eight different orientations likefront, front-right, right, and so on.
With these models for distance and orientation the robot is able to describe objects
in a qualitative egocentric fashion like: the ball is located in the front-left direction
at a medium distance.

Tactical Regions. What is further needed to describe the soccer scenario, is a
qualitative notion of strategic positions in a global frameof reference. In soc-
cer, there are several strategic roles a player can have likedefence, midfield, and
offence. Further, one can distinguish between three sides of the pitch as in [5]. The
play can be on the left or right side, or in the centre of the field. For our qualita-
tive world model we defined five zones ranging fromfarFront , which is a zone
directly in front of the opponent goal, tofarBack which includes the own goal,
and the sidesleft, middle, right. Again, we refer to [19] for details.
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Figure 1: Delaunay triangulation (bold lines) and Voronoi regions (white/grey) for
the counter-attack example.

Reachability of Regions or Objects. To express reachability mathematically,
one needs a model which takes into account the amount of free space available
between the positions of team-mates or opponents. One possible model is to use
Voronoi diagrams and their dual, the Delaunay triangulation as they separate the
field into non-intersecting regions and we get a connection graph between the play-
ers. (A Voronoi diagramV (S) of a setS of n point sites is the partitioning of
a plane withn points inton convex polygons such that each polygon contains
exactly one pointp ∈ S and every point in the given polygon is closer top than
any other pointp′ ∈ S. For a more detailed account on Voronoi diagrams and
their dual, the Delaunay triangulationDT (S), see e.g. [22].) Figure 1 depicts the
Delaunay triangulation and the Voronoi regions for the positions of the players in
a counter-attack situation. The intention of this move is that after player 8 captured
the ball, it dribbles towards the centre of the goal area until player 9 or 11 become
reachable for a pass at the in Figure 1 marked regions LF and RF, respectively. The
bold lines represent the triangulation, the white and grey regions correspond to the
Voronoi regions of the attacking team and the defending team, respectively. Fig-
ure 1(b) shows the diagram for the intended situation after player 9 and player 11
have taken their positions in their regions near the goal area. Note that we ignore
offside for simplicity here.

The Voronoi diagram gives us information about which position on the field
is closest to which player. In Fig. 1(a) we draw the conclusion that the opponent
defence controls the goal area, whereas after the successful counter-attack this line
of defence is penetrated. The triangulation yields a conservative estimate about
which player can receive a secure pass. In this particular example there is no con-
nection between player 8 and player 9 and this resembles our intuition that the
pass is not secure. In Figure 1(a) player 9 and player 11, respectively, can test if
their target regions are occupied by opponents and they can also test the distance
of the defenders to their particular region. Player 8 can dribble the ball as long as



no opponent is in a distance where it can tackle player 8.

3 Formalising Soccer Strategies

In this section we describe our approach to formalise soccerstrategies for soc-
cer robots [1]. The idea was to derive the basic behaviour patterns of soccer as
described in [5] and adapt them to the different soccer leagues in RoboCup. The
formalisation of the soccer moves was done in Readylog whichis also very suited
for this task because of its formal semantics. In [1] we also started a case study
how to apply the soccer moves to the different leagues. We leave out this part here,
concentrating on the qualitative aspects of the formalisation and refer to [1] for
further details.

In the following, we first describe the basic ontology for soccer strategies and
(related with this) the basic actions of a soccer player, before we derive the basic
qualitative predicates needed to formalise soccer moves. Further, we give an exam-
ple specification of a soccer move which can almost directly be encoded as Ready-
log program that is executable on a soccer robot.

3.1 The Organisation of Soccer Knowledge

Among modern soccer publications, Lucchesi’s book [5] is one of the most inter-
esting ones because it concentrates on strategic aspects ofsoccer rather than on
training lessons. Soccer strategies in literature (e.g. [5, 23]) are not as highly struc-
tured as, say, strategies for American football. Though, they are structured enough
to build a top-level ontology for it. According to [5] there are two phases in a
soccer game: (1) the defensive phase and (2) the offensive phase. In the defensive
phase the ultimate goal of the team is toprevent the opponent from scoring a goal
and togain ball possessionagain. When the second sub-goal of this phase is ful-
filled the game enters the offensive phase. Here, a controlled build-up of the play
has to be performed. In general, there are two ways to build upthe play: either
we introduce this phase in a counter-attack manner, i.e. fast and direct with a long
pass, or deliberately by a diagonal pass, or by a deep pass followed by a back pass.
The taxonomy for soccer strategy is depicted in Figure 2, where 3-4-1-2 stands
for the basic tactical setup of the team. The pattern 3-4-1-2means that the team is
playing with three defenders, four midfielders, one offensive midfielder, and two
forwards.

In the following, we will concentrate on the building-up phase for an illustration
of how to derive basic behaviour patterns for soccer play. Figure 3 shows two
example diagrams from [5]. The goal of the attacking team after building up the
play is tocreate a scoring opportunity. The final move then is to try toscore a
goal. In soccer, there exist several strategic groups, each having a particular task
in fulfilling the strategy just mentioned. The defence has toprevent the opponent
team from scoring and must build up the play. The midfielders work to create a
scoring opportunity and the offence has to score the goal.

Accordingly, a soccer strategy can be defined as a tuplestr = 〈RD,CBP 〉.



Figure 2: Top-level ontology according to [5].

Here,RD is a set ofrole descriptionsthat describe the overall abilities required of
each player position in relation toCBP , the set ofcomplex behaviour patternsis
associated with the strategy. Given the strategystr, the associated role description
rd ∈ RD can be described by the defence tactics task, the offence tactics task, the
tactical abilities, and the physical skills.

3.2 An Example: Build Up Play

In this phase of the game, the team’s objective is to take the ball towards the oppo-
nent goal in order to establish a setting which allows for creating a scoring oppor-
tunity. The ball has to be taken from the defensive players tothe offensive players.
There is a number of ways to build up the play:

Build up play immediately with long pass. The long pass enables the team to
take the ball up-field towards the opposing goal very quickly. There is an imme-
diate reversal of play and the risk of losing the ball near one’s own penalty area
is very low. However, the long pass is difficult to receive, sothe opponent may be
able to steal the ball more easily. Moreover, as there is not much time, the team
cannot move forward in a coordinated way.
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(b) Diagram 21 from [5].

Figure 3: Two tactical diagrams from [5]. The bold arrow nextto the field indicates
direction of play. Player movements are represented by arrows (→ ory),
passes are indicated by dashed arrows (99K), and squiggly arrows ( )
stand for dribbling. Opponents are not shown.

Build up play deliberately with diagonal pass. The diagonal pass allows for a
coordinated way to move forward with the ball and it is easy toreceive. The time
to get close to the opponent goal is longer than with the long pass. Thus, chances
of losing the ball in a dangerous area are higher.

Build up play deliberately with deep pass and subsequent back pass. This
way of building up play requires very good timing as it involves three players who
have to move in a coordinated way. If such a move is carried outsuccessfully it
allows the team to move forward up-field without great risks if they lose the ball.
We depict one exemplary tactical move for each of the three patterns to build up
play mentioned in Figure 4.

The decision which pattern to choose certainly depends on the opposing team as
well as on the particular situation. That is to say, when playing against an opposing
team which has many players in the midfield one would perhaps favour to build up
a play with a long pass whereas with a team leaving lots of space uncovered in the
midfield one would prefer the deep pass.

Basically, all the possibilities mentioned above are meantto take the ball up-field
and establish a more offensive setting for the team while remaining in possession
of the ball. The ball is either taken forward from the defenceto the midfield sec-
tion or in the case of the long pass directly to the offence section. Both can be
done through the centre of the playing field or by using the wings of the pitch.
Depending on how the play was built up there are several ways to create a scoring
opportunity.

3.3 Basic Primitives

From the example of the previous section one gets quite a goodidea which
behaviour patterns are needed for a soccer formalisation. Following the lines of [5],
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Figure 4: Three different ways to build up a play. Dashed lines represent pass ways
and solid lines denote a player movement. The bold arrow nextto the
field indicates the direction of play.

we distinguish betweenrole (back, midfield, forward) andside(left, centre, right)
in soccer. This distinction is more or less independent fromthe pattern of play
(e.g. 3-4-1-2 or 4-2-3-1). The combination of role and side (e.g. centre forward)
can be interpreted astype of a (human or robotic) soccer player or asposition
(region or point) on the soccer field. In the latter case, there is a certainzonecorre-
sponding to the three roles back, midfield, and forward. Altogether, this leaves us
with basically nine different positions, as illustrated inFigure 5(a).

The notions player type and position can be seen as instancesor specialisations
of the notion of anabstract position, or addressfor short usually associated with
its (actual) coordinates or a region on the soccer field. Alsothe position of the
ball is abstract, i.e. the parameter or goal of a test or operation of a soccer player
(agent). A movableobject in the context of soccer may be a player or the ball.
An object is in a currentstate, which besides other data includes information such
as the current speed or the view direction. Although not explicitly mentioned, a
model of behaviouris assigned to every object, e.g. average or maximum speed or,
as a special case, a deceleration rate for the ball. Additionally, every player needs
to hold data about other agents’ states. We abstract this by the termworld model.
All this is summarised in the class diagram in Figure 5(b).

In [5, p. ii] only few symbols are introduced that are used throughout the many
diagrams in that book: players (in many cases only the team-mates, not the oppo-
nents are shown), the ball, passing, movement of the player receiving the ball, and
dribbling. Conceptually, all symbols correspond toactions, which we abbreviate
aspass, goto, anddribble. Since all actions are drawn as arrows starting at some
player, naturally two arguments can be assumed:player andabstract position.
goto(player [LF ], region[CF ]) means for instance that the left forward player
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state:
object_behavior_model:

position

ball
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worldmodel:

reachable

role : {back,midfielder,forward}

side : {left,center,right}

hasBall

(b) Class hierarchy for soccer
derived from [5].

Figure 5: Tactical regions and abstract position hierarchyderived from [5]. The
field is divided into three rows (corresponding to player roles): back (B),
midfield (M), and forward (F), and three lanes (sides): left (L), centre (C),
right (R). An address may be one of the nine regions or player types.

moves in front of the opponent goal.
Although in most cases this is not explicitly mentioned in [5], actions require

that certain prerequisites are satisfied, in order to be applicable. Since our approach
aims at a very abstract and universal formalisation of soccer, we restrict ourselves,
for instance in case of a pass, to only two tests: possession of ball and reachability.
Each of them can be seen as apredicatewith several arguments:hasBall has the
argumentplayer (the ball owner);reachable has two arguments, namely an object
and an address.

A pass e.g. presupposes reachability, i.e. it should be guaranteed that the ball
reaches the team-mate. Clearly, the implementation of the reachability test is heav-
ily dependent of the respective soccer league and its (physical) laws. Therefore, at
this point, we only give a very general and abstract definition: Objecto can reach
an addressa iff o can move toa and after that the ball is not in possession of the
opponent team. This also covers the case of going to a position where the ball will
be intercepted.

The primitive actions we consider here aregoto(player , region),
pass(player , region), anddribble(player , region). Further we need the action
intercept which is a complex action built from the primitive ones. The arguments
of the actions areplayer andregion denoting that the particular player should go
to, pass, or dribble the ball to the given position. For describing the properties of
the world on the soccer field we need the fluentsreachable andhasBall(player)
among others. The precondition axioms for the actions are:

Poss(pass(player , region), s) ≡ hasBall(player)

Poss(dribble(player , region), s) ≡ hasBall(player)

Poss(goto(player , region), s) ≡ true



For our formalisation of soccer, reachability is central. Reachability strongly
depends on the physical abilities of the robot. Besides the physical abilities the
reachability relation has some independent properties. Ingeneral, we can distin-
guish three different reachability relations:

go-reachability: a playerp not being in ball possession will reach an address
a on the field before any other player:reachablego(p, a) with prerequisite
¬hasBall(p)

dribble-reachability: a player p being in ball possession is able to dribble
towards addressa with high probability of still being in ball possession after-
wards:reachabledribble(p, a) with prerequisitehasBall(p)

pass-reachability: a playerp being in ball possession is able to pass the ballb

towards addressa with high probability of a team-mate being in ball posses-
sion afterwards:reachablepass(b, a) with prerequisitehasBall(p)

With the Voronoi model presented in Section 2.3, we can defineour reachable
relation as a connection between vertices in the Delaunay triangulation. Note that
this approach is only one possibility for implementing reachability. The practical
experiences made in robotic soccer show that this model is useful as a mathemati-
cal description of all three kinds of reachability.

3.4 Deriving the Specification of Soccer Tactics

For our soccer domain axiomatisation, we give successor state axioms for the
ballPos function (ball position) andhasBall fluent as examples. We assume, that
the ball position changes only if we pass the ball to a team-mate or dribble with
the ball.

ballPos(do(a, s)) = b ≡ ∃player∃region
(

(

a = goto(player , region) ∧ ballPos(s) = b
)

∨
(

(a = pass(player , region) ∨ a = dribble(player , region)) ∧ b = region
)

)

A player is in possession of the ball if its position is the same as the position
of the ball. Of course, the player should be located in a certain area around the
ball, but for ease of presentation we leave this out. If the player passes the ball to
another position, the fluent value becomes false.

hasBall(player , do(a, s)) ≡ ∃region
(

(

a = goto(player , region) ∧ ballPos(s) = region
)

∨
(

hasBall(player , s) ∧ ¬∃region a = pass(player , region)
)

)

Please note the difference between effect axioms and successor state axioms. In
Sect. 2.1 we introduced effect axioms to describe the effects of actions. A successor



state axiom is defined for each fluent and defines all possibilities how the value of
this fluent is changed by any action (cf. [24]).

With these basic actions and their effects we can easily formalise examples of
building up play from Figure 3, starting with Figure 3(a) showing a long pass as
first action. There, back player 2 makes a long pass to forward9, who then passes
back to the centre midfielder 10, who can make a pass to forward11, who cuts
in deep down-field, as written in [5, p. 29]. Four agents that are team-mates are
actively involved in this manœuvre: back playerp2 = player [B] (whose side need
not to be specified), the centre midfielderp10 = player [CM ], and two forwards
p9 = player [xF ] andp11 = player [yF ] on different sides, i.e.x 6= y.

Before we are able to formalise the whole manœuvre, we have tothink about
what passing means exactly. A pass from playerp to p′ requires thatp is
in ball possession and that the ball can be passed top′, i.e. the logical con-
junction hasBall(p) ∧ reachable(ball, p′). Afterwardsp′ is in ball possession,
i.e. hasBall(p′). In [5, p. 27], three different types of passes are mentioned. They
can be formalised by additional constraints:

1. long pass withp.role = B ∧ p′.role = F ,
2. diagonal pass withp.side 6= p′.side, and
3. deep pass withp.role < p′.role where we assume that the roles (which can

also be understood as rows in Figure 5(a)) are ordered.
With these definitions and constraints for passing, the tactics in Figure 3(a) can be
described by the following program in a straightforward manner:

proc build-up-play
(pass(p2, p9); pass(p9, p10)||goto(p11, r));pass(p10, r)

endproc
Algorithm 1: Build-up-play algorithm.

Recall that subsequent actions (sequences) are marked withsemicolon; con-
current, i.e. parallel actions are separated by the symbol‖. In addition, r =
region[CF ] denotes the region in front of the opponent goal. Since we take the
allocentric view from the diagrams in [5], we may have parallel actions of dif-
ferent agents (e.g. player 11 running in front of the opponent goal, while player
9 or 10 initiates the pass). Clearly, this has to be turned into an implementation for
each agent.

As another example, consider the move depicted in Figure 6 which is a possible
move for a counter-attack. There, player 8 just captured theball from the oppo-
nent team and dribbles toward the goal while the forwards (player 9 and player 11)
revolve the opponent defence in order to get a scoring opportunity from both cor-
ners of the penalty area while player 10 starts a red herring by running to the centre.
The white circles represent opponent players. In the original figure [5, diagram 21]
(see Figure 3(b)), there are neither opponent players nor dedicated regions; we
inserted them here for illustration purposes.
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Figure 6: Extended diagram 21 from [5].

proc counterattack21
intercept;
startDribble(region[CF]);
waitFor (reachable(p11, region[LF ]) ∨

reachable(p9, region[RF ]) ∨
∃x.Opponent(x) ∧ Tackles(x));

endDribble;
if reachable(p11, region[LF ]) then

pass(region[LF]);
else ifreachable(p9, region[RF ]) then

pass(region[RF]);
endif

endproc
Algorithm 2: Counter-attack program.

Algorithm 2 is from the point of view of player 8, that is, all actions and tests
are performed by this player. Player 8 gains the ball with an intercept action. He
dribbles towards the centre (denoted byregion[CF ])) until either player 11 or
player 9 is able to receive the pass or an opponent forces player 8 to do another
action (which is not specified in this example). In the specification above, we use
the action pairstartDribble and endDribble instead of a singledribble action
accounting for temporal aspects of that action. Splitting the dribble action into
initiation and termination is a form of implicit concurrency since other actions can
be performed while dribbling.

The next step in the presented sequence is awaitFor construct. It is used to
specify that no further actions are initiated until one of the conditions becomes
true, i.e. players 11 or 9 are able to receive a pass in their respective regions or
an opponent tackles player 8, i.e. an opponent could probably intercept the ball.
Note that during the blocking of thewaitFor the dribbling of player 8 continues
and sensor inputs are processed to update the relationreachable.

Finally, in the conditional we have to test which condition became true to choose
the appropriate pass. Note that we do not choose an action in the case of both
player 9 and player 11 cannot receive the pass as this would bethe matter of
another soccer move procedure. The counter-attack programs for other players
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Figure 7: Example for thebuild up playmove.

participating in this move can be specified similarly.

3.5 An Example Move on a Robot

We now specify the soccer movegoal-kick in Readylog and we show that our
qualitative world model supports the specification. We adapted three possible ways
to build up a play as discussed in [5] (see also Section 2.3).

The first way to build up play is with a long pass (Fig. 7(a)). Weimmediately
notice that the term long is one of the coarse, qualitative notions we need to estab-
lish in order to adapt human soccer theory for our autonomoussoccer agents. We
could also formulate this as passing the ball from a back position to a front position
on the playing field. The second way to build up play is with a diagonal pass as
depicted in Fig. 7(b). This time, the term diagonal is of qualitative nature. Diag-
onal means passing to the side being opposite to the current one. Fig. 7(c) shows
the last possibility to build up play which is with a deep pass(dashed line labelled
with 1) followed by a subsequent back pass (dashed line labelled with 2). The term
deep is used to denote the space behind or in between a group ofopponent players.
The endpoint of such a pass has to be the most free position available in between
or behind the group of opponents.

We now try to adapt as much of these descriptions as possible by integrating
their most essential parts into one pattern. All three possibilities have in common
that the ball is located in the back part on the pitch. According to a role ontology it
is a player currently having a defensive role which is about to initiate the pattern to
build up play. We already characterised the possibility of along pass as bringing
the ball to the front part of the pitch. Therefore, in this case the agent chooses to
pass to a teammate located in the attacking zone. For the two other possibilities
the destination of the pass is the midfield. The agent can either make a diagonal
pass, that is the case if the target position is on the opposite side of the field, or
it can simply pass to a free area on the same side or in the centre of the pitch. To
illustrate our adaptation of the build up play patterns for the Middle-size league
we depicted a diagram similar to the ones in [5] in Figure 7(d).



proc build up play defender,
if haveBall(ownNumber)then

getFreeSide(offense,FreeSide);
getPassPartner(offense,FreeSide,PassPartner );
solve(

if ¬isKickable(ownNumber ) then
interceptBall

else
if isPassReachable(ownNumber ,PassPartner ) then

passTo(ownNumber ,PassPartner )
endif

endif
| pickBest (bestSide,{leftSide, middleSide, rightSide}

dribbleTo(ownNumber ,middleZone,bestSide)
| kickTo(ownNumber ,middleZone,bestSide) )
/* end of pickBest*/

| interceptBall; kickTo(ownNumber , middleZone, middleSide ),
3, func Reward ) /*end solve with horizon 3*/

else
interceptBall

endif
endproc

Algorithm 3: The build up play program for the defender.

Algorithm 3 shows a program in our action language Readylog capturing the
above example. Note that this specification contains several qualitative elements
such as middleZone, leftSide, and offence as well as qualitative predicates such as
isPassReachable. With our qualitative world model we are able to simply transfer
the qualitative notions from the specification in [5]. Moreover, the use of qualita-
tive terms and predicates makes the program applicable in many game situations.

In the first part of the procedure the agent assigns the most free side in the
offensive zone to the variableFreeSide. It further picks a team-mate in the offense
that may receive a pass. Then the agent starts deliberating with thesolve statement.
Using decision-theoretic planning it decides which of the options separated by
the | to take. The first possibility is to check whether the ball is kickable. If it is
not kickable the agent needs to intercept the ball. If the pass partner which was
determined initially is reachable with a pass the agent is supposed to carry out the
pass action. The second possibiblity is to use thepickBest statement to choose the
best argument for the subsequent action. That is to say, the agent decides to call the
actionpass to with the best value taken from the list of arguments specifiedwith
thepickBest statement. This list of positions corresponds to the set of possibilities
to build up a play we depicted in Figure 7(d). It can choose here whether to dribble
or to kick to the position chosen bypickBest . The last possibility available is to
intercept the ball and directly kick it towards the centre ofthe field. Further details



and case studies on formalisations can be found in [1, 19].

4 Discussion

In this chapter, we presented an approach towards a formal specification of soccer.
For the behaviour specification of our soccer robots we started thinking if it could
be helpful to review the soccer literature in order to learn more about how soccer is
specified. What showed up was that, on the one hand, there exists work on soccer
strategies and tactics and, on the other hand, that these strategies are not formalised
in a way which is appropriate for soccer robots.

As soccer is a structured game, a top-level ontology can be extracted quite easily.
Also does the soccer literature mention only few basic primitives likepassor run.
With the appropriate preconditions for these actions one can define a basic action
theory for the soccer domain. For our soccer robot application it is possible to
define spatial relations like distance or reachability in a qualitative fashion. One
has to remark that our approach works for soccer playing robots. Trying to adapt
the results to human soccer play in order to gain more insights about human soccer
strategies and tactics it becomes obvious that especially the spatial relations have
to be adapted, too. One has to find appropriate models which reflect the mobility
of human soccer players and which model the possibility to play headers and high
cross passes.

4.1 Related Works

The benefit of mathematics for detailed analysis and improvement of sports was
described formally before, e.g. in [25]. These approaches concentrate in many
cases on the optimisation of single tactics, as e.g. on downwind sailing in [26].
Other approaches on formalising sports exist. For example,in [27] tactical pat-
terns for water polo are defined. Similar to our approach basic action primitives
are identified and tactical formations are described formally. There is also work in
the field of automatic commentating and analysing sports.

Automated commentator systems. Specifically related to the RoboCup domain
there are three groups which developed systems for automatic real-time commen-
tary. Their systems together won the scientific award at RoboCup 98 [28]. An
overview on the three systems can be found in [29]. Of particular interest are the
two systems ROCCOand MIKE since both try to model and identify certain aspects
of soccer.

ROCCO evolved from the SOCCER system [30] which generates natural lan-
guage descriptions of a soccer game. It works on informationprovided by the
RoboCup soccer simulation server. Based on elementary events (likekickor catch)
and geometric data provided by the Soccer Server, ROCCO performs a high-level
scene analysis by an incremental event-recognition. Declarative concepts of events
represent a priori knowledge about typical occurrences in ascene. These concepts



are organised in an abstract hierarchy, grounded on specialisation and temporal
decomposition. There exists a simple recognition automaton for each concept.

M IKE also uses the information provided by the Soccer Server as its input.
M IKE consists of six analysis modules running concurrently thatpost propositions
of information gathered to a pool. One of the six analysis modules makes also use
of Voronoi diagrams. Their application enables MIKE to determine the defensive
areas covered by a player as well as to assess the overall positioning. Players are
considered to be free if they are positioned as close as possible to a Voronoi vertex
of the diagram of the opposing team. Furthermore, triangular shapes in a Voronoi
diagram indicate a tight formation since the average shape of a Voronoi area is
hexagonal. These two observations seem to provide further qualitative insight from
a tactical point of view.

Real-time analysis tools. In a recent work [31], Beetz et al. overview the FIPM
system, a real-time analysis tool for soccer games. Based onposition data of the
players and the ball they interpret common soccer concepts.In [31] they report on
first results drawn from data from the RoboCup simulation league. They use first-
order interval temporal logic to represent events or situations. Their model consists
of five layers comprising a motion, situation, action, and tactical layer. On the
situation layer they identify concepts likeScoringOpportunity. With data mining
techniques they assess the conditions for such situations.On the action layer they
distinguish between several kind of models. The observation model for example
classifies shots to belong to a dribbling or a pass, the predictive model use decision-
tree learning to form rules for predicting the success ratesof goal shots. They also
provide, for example, information about the physical abilities of players based on
the distances the player covers during a match, and also tactical patterns of a team
can be derived. These information are especially useful forsoccer coaches.

Miene et al. [32] report on successful experiments on detecting and predicting
offside positions based on data also from the simulation league. They developed
an algorithm for rule-based motion interpretation. The rules are given as back-
ground knowledge in first-order logic. The input data are first temporally seg-
mented based on thresholds an monotonicity criteria. Then the segmented motion
data are mapped into qualitative classes likeno motion, or slow. They use logical
representations to model game situations like a player being in an offside posi-
tion. They are able to detect offside positions successfully and can also predict if a
player risks to run into an offside trap. Important to note isthat they do not regard
static situations but analyse the motion data. This covers especially the dynamic
aspects of soccer.

Formalising teamwork and strategies. One approach for specifying teamwork
among others is thecommunicative multiagent team decision problem(COM-
MTDP) model [33]. Communication is explicit in this framework, and uncertainty
can be expressed by probabilities. A reward function allowsanalysing the opti-
mality of behaviour, which could be done with model checkingor theorem prov-
ing techniques for Golog or similar specifications in our context. However, the



main focus of this paper is on the questionwhat should be evaluated, and the
answer is dependent on the chosen domain. Therefore, if we want to evaluate the
behaviour of multiagent systems for the RoboCup scenario, then we need primi-
tives for describing the behaviour of robots in this domain as done here.

In a recent paper [34], the four-legged league champion teamNUbots 2006 was
tested against more aggressive and more defensive strategies. The results indicate
that global team tactics should be considered in conjunction with a team s style of
play. A set of metrics was developed which may enable a futurerobot soccer team
to observe, reason, and modify its global strategy to suit that of an opposing team.

McMillen and Veloso [35] present a framework for distributed, play-based role
assignments. The proposed framework allows to specify several team play strate-
gies on a very high level. In addition, some applicability conditions for each strat-
egy must be given, e.g. second half of the game and the team is winning. Finally,
roles (goalkeeper, defender etc.) must be listed. In [35] a successful case study
with Aibo robots in the four-legged league is also reported.However, no clear for-
mal semantics of the calculus is stated which we get for free in related approaches
e.g. with state machines [36] or the situation calculus as presented in this paper.

4.2 Final Remarks

Finally, it will be interesting to see if, in the future, a formal approach to tactics
cannot only be useful for computer scientists trying to specify a system but also,
this work as a starting point, for sport scientists to build formal models of their
respective sports discipline. Future work in this direction for soccer has to con-
centrate on appropriate models for the mobility of human players to find a unified
theoretical model for soccer. We believe that such formal approaches in general
will help sport scientists to better understand and to analyse their sport disciplines.

The biggest lesson we learnt is that weare able to formalise soccer theory on
an abstract level. This might not be surprising, however, some of the concepts real
soccer experts use are quite fuzzy and therefore difficult todefine and implement.
One of the challenges of Computer Science in Sport is to get researchers from
sport and computer science together to find a common language. This will help
both sides to bring research further.

References

[1] Dylla, F., Ferrein, A., Lakemeyer, G., Murray, J., Obst,O., Röfer, T., Stolzen-
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