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Abstract

This chapter discusses a top-down approach to modellingesé@owledge, as it
can be found in soccer theory books. The goal is to model sategies and
tactics in a way that they are usable for multiple roboticcendeagues in the
RoboCup. We investigate if and how soccer theory can be fisethsuch that
specification and execution is possible. The advantageear :ctheory abstracts
from hardware and from specific situations in different leegy We introduce
basic primitives compliant with the terminology known incser theory, discuss
an example on an abstract level and formalise it. The fosatdin of soccer pre-
sented here is appealing. It goes beyond the behavioufrfispdion of soccer play-
ing robots. For sports science a unified formal soccer theogiht help to better
understand and to formulate basic concepts in soccer. Téshility of the for-
malisation to develop computer programs which allow to $ateuand to reason
about soccer moves might also take sports science a stepifurt

*This research has been carried out within the special res@gaogram DFG-SPP 112500pera-
tive Teams of Mobile Robots in Dynamic Environmemtd the Transregional Collaborative Research
Center SFB/TR 8 ospatial Cognition Both research programs are funded by the German Research
Foundation (DFG). A short and preliminary predecessor afplaiper appeared as [1].



1 Robotics and Soccer

In 1997, the firsRoboCupthe international world championship in robotic soc-
cer was held. The event was part of the International Joimfé@ence on Atrti-
ficial Intelligence (IJCAI), and set a new benchmark: thelgdaRoboCup is to
foster Artificial Intelligence (Al) and robotics research that by 2050 a team
of autonomous humanoid robots can be built that will be ableinh against the
human soccer world champion [2]. Similar to the goal of breathe human world
champion in chess with a computer, in RoboCup the journdyeisdéward.

The initiators of RoboCup have chosen soccer as a testbezbamdon research
platform because it covers a wide range of problems fromticbdo Al: from
energy supply, creating robust robots, over vision anda@efusion to coordina-
tion, cooperative multiagent systems, behaviour programgnmachine learning,
and strategy acquisition, and many more issues have to tedsohtil it will be
possible to reach this goal. Soccer is an interesting res@aoblem because itis a
multiagent domain where agents have to cooperate withtieein-mates and deal
with adversarial agents in real-time simultaneously.

Moreover, during the first years of research in robotic sodcbas already
turned out that soccer playing robots can also be integbtithemselves, because
matches between robots or computer programs can be qugteagning and excit-
ing — not only for the developers of the respective teams.

1.1 RoboCup Leagues

To place the emphasis on different aspects, a number ofdsduave been intro-
duced in the RoboCup. In this section, we will briefly disctissse different
leagues and their particular properties.

Simulation League. The 2D simulation league, one of the first leagues in
RoboCup, concentrates on research in multiagent systeofstértures and coor-
dination mechanisms). Two teams of eleven agents compedevirtual soccer
match in a real-time, but highly abstracted discrete timaugition. A simulation
server, called Soccer Server [3], receives the action camdm&om the agents.
Based on these commands it updates the state of the worldispatahes cur-
rent sensory information to each agent in the next simulatjele. The simulator
also controls the game play. An automated referee judgewleff, throw-ins, and
counts the goals. The frame of reference for sensory inputeigent commands is
egocentric, i.e. the positions of all visible objects angegias distance and direc-
tion to the respective agent. Besides the visual informatite Soccer Server also
sends aural messages to the player, i.e. a player can sendel0pler simulation
cycle, and within a close range around the agent the messagéenheard by
other players. By this an unreliable low-bandwidth commation among players
can be realised, which most teams use for exchanging patteaigents’ local
world models. Agents can settle actions by sending one obfagic actions back
to the server. These actions atash kick, turn, catch (for the goal keeper), and



tackle Communication is handled with the help of an extegyaction. In recent
years a more realistic but still abstract 3D simulation hesrnbadded which will
soon replace the 2D simulation. This slowly evolves intawasation of humanoid
robots.

Small-size League. The Small-size league is a robotic league. Five small
wheeled robots play on a field of the size of a table tennisdeath a golf
ball. As the robots are too small to carry sensors on-boagdilang camera is
installed above the field. The camera images are sent to each Vision process-
ing extracts the relevant information from the images. Tevate the recognition,
each player has a special colour coding on top. With theserrdtion the actions
that the robots should perform are calculated by a computethe field. The
actions are sent back to the robots via radio. Thus, the &iggartly autonomous.
The research focus here is mainly on image processing ansiatemaking. In
contrast to the other leagues mentioned, player behavanube derived from a
global, allocentric world model.

Middle-size League. Here, two teams of up to five fully autonomous wheeled
robots compete on a field of the sigex 12m. The robots may have a maximal
size of50 x 50 cm and the height may not excegticm. The research focus of the
Middle-size league is on robotics, decision making, seasaoractuator systems,
and the integration of software and hardware. Especiallgi;league it turns out
that the whole system, hardware as well as software, must éore unit. Only
completely well integrated systems are competitive.

Four-legged League. While in the Small-size and the Middle-size league the
hardware is developed by the participating teams and thislogment is part of
the research, the Four-legged league aims at developig cobtrol software on

a common platform. The robots here are Aibo dog robots fromySbhe differ-
ent developments can be well compared as they all work onaime platform.
The capabilities of the robots are limited. It has only a v&mall camera resolu-
tion, the sensor values of the joints in the legs of the dogharke Another prob-
lem in this league regarding the hardware platform is thatyStoes not provide
too many information about the hardware such that severatalters had to be
reverse-engineered in order to learn how they work. Firthié/quadruped walk
and therefore changing horizon pose difficulties in thiglea Another remark-
able thing in this league is that code development is higlgriduted. Within
the German Teanf4] several German universities work on a common code base.
While their respective teams compete against one anothational events, the
most promising approaches are integrated in a national tleatnparticipates quite
successfully in the RoboCup world cups. Clearly, this ispguted by the shared
hardware. Unfortunately, this league will come to an endSesy stopped the
production of Aibo robots in 2006.



Humanoid League. The ultimate goal of the RoboCup initiative is to play
(robotic) soccer with humanoid robots. Of course, researchuman-like robots
must be conducted in order to achieve this goal. The humdaaglie exists for
three years now and has already made remarkable progresdlsém. In the begin-
ning, the competitions only were so-called technical @mgkes, where the teams
showed the capabilities of their robots. Today, there amadly soccer matches
two-on-two. There exist two different sub-leagues basethersizes of robots, the
so-called Kid-size league and the Teen-size league. In itiesiKe league robots
with a height from30 cm to 60 cm compete while a typical Teen-size robot mea-
sures betweefi5 cm and130 cm, although in special cases robots up & cm
may participate in this league.

Non-soccer leagues. In order to address robotic and Al related problems not
covered by the soccer-playing robots scenario, additiBadloCup competitions
have been created: the RoboCup@Home and the RoboCup Resgued. In
the former, robots should fulfil helper tasks in human homédrenments. In the
latter autonomous agents and robots have to solve largeraalll scale rescue
tasks, namely coordinating rescue teams in a (simulatethjcpeke scenario and
rescuing entombed people from an urban disaster area.

1.2 Challenges in Robotic Soccer

Participating in RoboCup, one faces a variety of problemarier to enable the
robots to play soccer. Some of the problems are purely cetateobotics: one has
to deal with sensors and actuators, making the robot rurer@itpects are related
to software design accounting for the real-time aspecth@sbccer domain. The
software system must be designed in such a way that sensomiaion coming
in with high frequency can be processed promptly. Upon tluege the robot
must decide on appropriate actions lkiekingor dribbling and compute the cor-
responding actuator commands. Further problems like atieig, collision avoid-
ance, and localisation have to be solved. Beyond thesegmabit comes to the
guestion how the processing from sensor inputs to actuatioubis designed.
State of the art for soccer robots are so-called reactiviesyss Usually the robots
make up a model of the accessible world from their sensor. &ateh a world
model contains data like the own position on the field, thetjposof the ball, and
the positions of opponents perceived. In a reactive sysagmayticular configura-
tion of the world state, i.e. a configuration of world modetighles, are mapped
to an action the robot can take. In reactive systems, thermue of certain
variable values is mapped directly onto a specific actiohavit considering what
happened in the past. These actions are rather complex@csignal sequences.
For an intercept action, for example, the system has to takeaiccount the posi-
tion of the ball, its velocity, and the relative directionitdo set appropriate motor
commands such that the ball is finally in the gripper of theotob

At this stage of development the designer of such a roboesysias to think
about how the behaviour of the robot should be set up. As latcbefore, one



possibility is to directly couple sensors and actuatorsggay via a world model
representation). The system designer now has to think dbeabilities the robots
have and she has to think about how soccer is played. With@sozbot and its
restricted abilities, currently, the behaviours are gsitaple: usually, one robot
captures the ball, dribbles towards the opponent goal @ty score.

1.3 Learning from Human Soccer

Keeping in mind the RoboCup vision, only utilising such sienpehaviour pat-

terns is not sufficient. One has to think about how humans gteger. What are
the different moves, strategies, and tactics? Clearly, raamoid robotic system
must be able to perform moves that are as sophisticated asé¢isaised by human
soccer teams in order to be competitive.

That is why we started investigating human soccer theorgdonl more about
the core of soccer in [1]. The aim of this joint research wilckground in different
RoboCup leagues was to come up with a general theory of sémceybots. We
approached building this theory by investigating exissogcer literature to work
out formal aspects of soccer. Particularly, we looked aktbtmk by Lucchesi [5].
In this book soccer moves are described by diagrams congpimiportant player
positions. Several actions lildribble or moveare depicted with arrows pointing
to other positions on the pitch. In most of the diagrams thstjpms of opponent
players are left out. This is due to the abstract charactireafepresentation. To be
able to understand the idea of the moves a common socceogwptslassumed. In
general, humans are very good in understanding such abgti@iative represen-
tations. In brief, qualitative knowledge is obtained by gaming features within
the object domain rather than by measuring them in termsroésartificial exter-
nal scale. Thus, qualitative knowledge is relative knogkeahere the reference
entity is a single value rather than a whole set of categ¢éks Though, for a
robot these representations do not help at first. The diaghawve to be translated
into a formal, mathematical description of the scene bedar@bot could perhaps
make use thereof. It starts with fixing an ontology for soabefining, for exam-
ple, what it means for a player to be a defender or an attaEkethermore, the
spatial relations used within the descriptions have to bime. The questions to
be answered here are for example: in which situation is aesanove applicable,
or when can a pass be played to a teammate, and finally, hovhea®tuence of
actions of the soccer move be formally described.

1.4 Overview of the Rest

This chapter is about the ongoing work to formalise socaapiyfor the behaviour
specification of soccer robots. The future direction we gum® is to come to a
formal description of soccer. Beyond robotic soccer it dduglp to better under-
stand soccer, to be able to better analyse soccer, and taginsoccer moves with
a computer program.



The chapter is organised as follows. In Section 2 we sketetsfiecification
language Readylog and motivate spatial relations we uséoforalising soccer
theory. In Section 3 we introduce soccer moves as given bghesi in [5], deriv-
ing the soccer ontology and the building blocks for soccéeims of actions and
their preconditions. We also present a robotic soccer elaamm show how ele-
ments of soccer theory can be adapted to soccer robots. Weraso sketch the
qualitative world model we defined in order to describe ingiatr regions on the
soccer pitch. We conclude with a discussion of the relatedk\and a perspective
outlook on this work (Section 4).

2 Theoretical Background

In this section we briefly introduce the languageadylogwhich we use for the
behaviour specification and programming of our soccer sbthis language is
a formalism for combining robot programming with plannitigs also very well
suited to formalise the soccer domain. We start with an éhteotion to the situa-
tion calculus, that is the formalism which Readylog is basedThen we give an
overview of Readylog and the different programming cordgrwvhich are avail-
able. We leave out the formal definition of the language conts. It is important
to note that a formal semantics for the language existsthieeexecution of pro-
grams of Readylog is not dependent on a particular impleatient which makes
it very well suited to formalise soccer theory. In the restiid section, we explain
spatial relations that are needed for a formalisation ofsotheory.

2.1 Situation Calculus

The situation calculus [7, 8] is a logical second-order leage proposed by John
McCarthy in 1963. It allows us to reason about actions anchgbaThe world
evolves from an initial situation due to primitive actio®ssible world histories
are represented by sequences of actions. The situatiamusldistinguishes three
different entitiesactions situations and domain dependeabjects There exists
a special binary functiotio(a, s) which denotes the situation that arises after per-
forming actiona in situations. The constant, denotes the initial situation, i.e. the
situation where no actions have occurred yet.

The state of the world is characterised by relations andiomg with a situation
term as their last argument. They are caltethational andfunctionalfluents. As
an example consider a robot lifting an object. The fluknltding(s) describes
whether the robot has lifted the object and holds it in itpgr. In the initial
situations, the robot has not picked up the object, thuéding(so) is false. Now
the robot performs the actiopickup(object). The situation describing the new
state of the world is; = (do(pickup(object), so). The effect of the action can be
described in terms of the fluehblding. It should hold that after performing the
pickup action the fluent

holding(do(pickup(object), so)) = true,



i.e. the robot has lifted the object and holds the objecsigiiipper. What is needed
to make this true is a so-called effect axiom which describeseffects of the
actionpickup. A possible effect of this action is

holding(object, do(pickup(object, s)).

This means that if the robot performs the action pickup,llbfes that in the suc-
cessor situatiodo(pickup(object, s)) the fluentholding(object) becomes true.
What is further needed is a set of axioms which describe wheacton is pos-
sible. For our pickup action a precondition could be thatlibr must not be too
heavy, or expressed formally

Poss(pickup(object), s) = —heavy(object, s).

Poss is a predicate which denotes the possibility to execute @prat a par-
ticular situation. Summarising the basic ingredients efshuation calculus, one
specifies a formal theory defining fluents, actions, theicgnéitions, and their
effects. Now, one can reason, for example, if at some stateeoforld after per-
forming a sequence of actions, particular properties ofttbed are true or false.
With this formalism one can easily simulate sequences afreetind find out how
the world looks like afterwards. We only briefly sketched #iteiation calculus.
For a thorough discussion about the situation calculus vier te the textbook
written by Reiter [8].

2.2 Readylog

Readylog [9, 10] is a variant of Golog [11] which is based orit&t&s variant of
the situation calculus [7, 8] as described above. We willJmiefly sketch the
constructs of Readylog in the following. The origif@blogevolved to an expres-
sive language over the recent years. It has imperative @orinstructs such as
loops, conditionals, and recursive procedures, but alse #andard constructs
like the nondeterministic choice of actions. Extensioristder dealing with con-
tinuous change [12] and concurrency [13], allowing for exxogus and sensing
actions [14] and probabilistic projections into the fut{B], or decision-theoretic
planning [16] which employs Markov Decision Processes (MPP

Readylog integrates these extensions in one agent progreniramework [9,
10]. For specifying the behaviour of an agent or robot théo¥ahg constructs
exist:

1. sequencea;b)

2. nondeterministic choice between actiofigd)

3. nondeterministic choice between action argumerits:Best

4. MDP solving:solve(p, h),

p is a Golog programy; is the MDP’s solution horizon.

. test actions?(c)
. event-interruptwaitFor (c)
7. conditionalsif (¢, a1, az)

o Ol



8. loops:while(c,aq)

9. condition-bounded executionithCtri(c, ay)

10. concurrent execution of prograntg; ||pz)

11. probabilistic actiongprob(valprop, a1, az)

12. probabilistic (offline) projectiorpproj(c, aq)

13. proceduresproc(name(parameters), body)

To encode the behaviour one has to give a domain axiomatisiaitluding the
actions the robot can perform together with their effecis] the fluents which
describe the properties of the world, e.g. the ball positExamples of domain
descriptions for the soccer domain can be found in [17, 18].

2.3 Spatial Relations

In contrast to formal descriptions of (soccer) knowledge®ans of mathematical
equations or the situation calculus and their derivatitesnan representations
of soccer are as such qualitative. Distances between glayethe pitch are, of
course, never quantitatively represented or perceivedubyan players. A player
would never express: | have to play the pass when my team-maata distance
of exactly 2.35m and she is at an angle of 48 me. This is one of the problems
when trying to transfer the human soccer theory to soccatsoBdequate human-
readable models have to be found in order to be able to trahsf@an expert

knowledge to a robot. In the following, we list some basictspa@ategories.

Distance and Orientation. The basic notion needed for describing soccer moves
is a notion of space and distance. The approach describé&@jims[based on [20,
21]. We started with an egocentric relation of distance. @efines a metric for
IR!, builds equivalence classes for rangedRdf and assigns constants likear

or far to each class. To build the orientation relation we buildiesjance classes
over ranges of angles. Each sector is assigned an oriantétowith a compass
rose. We use eight different orientations likkent, front-right, right, and so on.
With these models for distance and orientation the robdilis @ describe objects

in a qualitative egocentric fashion like: the ball is lochie the front-left direction

at a medium distance.

Tactical Regions. What is further needed to describe the soccer scenario, is a
gualitative notion of strategic positions in a global frawfereference. In soc-
cer, there are several strategic roles a player can haveldilence midfield and
offence Further, one can distinguish between three sides of tbk p# in [5]. The

play can be on the left or right side, or in the centre of thalfi€lor our qualita-

tive world model we defined five zones ranging frganFront, which is a zone
directly in front of the opponent goal, tfarBack which includes the own goal,
and the sideeft, middle right. Again, we refer to [19] for details.
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(a) Initial situation. (b) Intended resulting situation.
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Figure 1: Delaunay triangulation (bold lines) and Vororemions (white/grey) for
the counter-attack example.

Reachability of Regions or Objects. To express reachability mathematically,
one needs a model which takes into account the amount of freeesavailable
between the positions of team-mates or opponents. Onebfmssodel is to use
Voronoi diagrams and their dual, the Delaunay triangutatie they separate the
field into non-intersecting regions and we get a connectiaplybetween the play-
ers. (A Voronoi diagrant/(S) of a setS of n point sites is the partitioning of

a plane withn points inton convex polygons such that each polygon contains
exactly one poinp € S and every point in the given polygon is closerptdhan
any other poiny’ € S. For a more detailed account on Voronoi diagrams and
their dual, the Delaunay triangulatidnT’(S), see e.g. [22].) Figure 1 depicts the
Delaunay triangulation and the Voronoi regions for the fiass of the players in

a counter-attack situation. The intention of this move & Hfter player 8 captured
the ball, it dribbles towards the centre of the goal ared pfayer 9 or 11 become
reachable for a pass at the in Figure 1 marked regions LF aneeRbectively. The
bold lines represent the triangulation, the white and gegyons correspond to the
Voronoi regions of the attacking team and the defending teespectively. Fig-
ure 1(b) shows the diagram for the intended situation afeergy 9 and player 11
have taken their positions in their regions near the goal.dvete that we ignore
offside for simplicity here.

The Voronoi diagram gives us information about which positon the field
is closest to which player. In Fig. 1(a) we draw the conclnglmat the opponent
defence controls the goal area, whereas after the suctessfuer-attack this line
of defence is penetrated. The triangulation yields a ceasge estimate about
which player can receive a secure pass. In this particukmele there is no con-
nection between player 8 and player 9 and this resemblesntuition that the
pass is not secure. In Figure 1(a) player 9 and player 11ectsply, can test if
their target regions are occupied by opponents and theylsartest the distance
of the defenders to their particular region. Player 8 cabliei the ball as long as



no opponent is in a distance where it can tackle player 8.

3 Formalising Soccer Strategies

In this section we describe our approach to formalise sostategies for soc-
cer robots [1]. The idea was to derive the basic behaviouee of soccer as
described in [5] and adapt them to the different soccer leagu RoboCup. The
formalisation of the soccer moves was done in Readylog wikielso very suited
for this task because of its formal semantics. In [1] we atsotad a case study
how to apply the soccer moves to the different leagues. We leat this part here,
concentrating on the qualitative aspects of the formadieaaind refer to [1] for
further detalils.

In the following, we first describe the basic ontology for sercstrategies and
(related with this) the basic actions of a soccer playemtaeive derive the basic
qualitative predicates needed to formalise soccer movethér, we give an exam-
ple specification of a soccer move which can almost dire@lgticoded as Ready-
log program that is executable on a soccer robot.

3.1 The Organisation of Soccer Knowledge

Among modern soccer publications, Lucchesi’s book [5] ie ohthe most inter-
esting ones because it concentrates on strategic aspesteadr rather than on
training lessons. Soccer strategies in literature (e,@39 are not as highly struc-
tured as, say, strategies for American football. Thoughy #ire structured enough
to build a top-level ontology for it. According to [5] there@eatwo phases in a
soccer game: (1) the defensive phase and (2) the offensasepin the defensive
phase the ultimate goal of the team igptevent the opponent from scoring a goal
and togain ball possessioagain. When the second sub-goal of this phase is ful-
filled the game enters the offensive phase. Here, a cordrbiléd-up of the play
has to be performed. In general, there are two ways to builtheplay: either
we introduce this phase in a counter-attack manner, i.eafakdirect with a long
pass, or deliberately by a diagonal pass, or by a deep pé@sdol by a back pass.
The taxonomy for soccer strategy is depicted in Figure 2,revi3e4-1-2 stands
for the basic tactical setup of the team. The pattern 3-4afedns that the team is
playing with three defenders, four midfielders, one offeasnidfielder, and two
forwards.

In the following, we will concentrate on the building-up [glegfor an illustration
of how to derive basic behaviour patterns for soccer plagufé 3 shows two
example diagrams from [5]. The goal of the attacking tearerdftiilding up the
play is tocreate a scoring opportunityThe final move then is to try tecore a
goal. In soccer, there exist several strategic groups, eacimgpavparticular task
in fulfilling the strategy just mentioned. The defence haprievent the opponent
team from scoring and must build up the play. The midfieldeoskvio create a
scoring opportunity and the offence has to score the goal.

Accordingly, a soccer strategy can be defined as a tuple= (RD,CBP).
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Offensive Phase

Get Ball Build-Up Play Create Goal Opportunity Make Goal

Fast Build-Up Flay with Deep Pass [S1ow Build-Up Play with Diagonal Pasg Build-Up Flay with Deep Fass and Back P azg|

Figure 2: Top-level ontology according to [5].

Here,RD is a set ofole descriptionghat describe the overall abilities required of
each player position in relation t6B P, the set ocomplex behaviour patterris
associated with the strategy. Given the strategythe associated role description
rd € RD can be described by the defence tactics task, the offentestéask, the
tactical abilities, and the physical skills.

3.2 An Example: Build Up Play

In this phase of the game, the team’s objective is to takedledwards the oppo-
nent goal in order to establish a setting which allows foating a scoring oppor-
tunity. The ball has to be taken from the defensive playetkamffensive players.
There is a number of ways to build up the play:

Build up play immediately with long pass. The long pass enables the team to
take the ball up-field towards the opposing goal very quickhere is an imme-
diate reversal of play and the risk of losing the ball nearoown penalty area
is very low. However, the long pass is difficult to receivels® opponent may be
able to steal the ball more easily. Moreover, as there is nathntime, the team
cannot move forward in a coordinated way.
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(a) Diagram 4 from [5]. (b) Diagram 21 from [5].

Figure 3: Two tactical diagrams from [5]. The bold arrow niexthe field indicates
direction of play. Player movements are represented byarfe> or ~),
passes are indicated by dashed arrows), and squiggly arrows~%)
stand for dribbling. Opponents are not shown.

Build up play deliberately with diagonal pass. The diagonal pass allows for a
coordinated way to move forward with the ball and it is easyeteive. The time
to get close to the opponent goal is longer than with the lagspThus, chances
of losing the ball in a dangerous area are higher.

Build up play deliberately with deep pass and subsequent b&cpass. This
way of building up play requires very good timing as it invedvthree players who
have to move in a coordinated way. If such a move is carriecsoatessfully it
allows the team to move forward up-field without great rigkhey lose the ball.
We depict one exemplary tactical move for each of the thréteme to build up
play mentioned in Figure 4.

The decision which pattern to choose certainly dependseaphosing team as
well as on the particular situation. That is to say, wheniplgyagainst an opposing
team which has many players in the midfield one would perreagaif to build up
a play with a long pass whereas with a team leaving lots ofespacovered in the
midfield one would prefer the deep pass.

Basically, all the possibilities mentioned above are maatzatke the ball up-field
and establish a more offensive setting for the team whileareimg in possession
of the ball. The ball is either taken forward from the defetwé¢he midfield sec-
tion or in the case of the long pass directly to the offencei@ecBoth can be
done through the centre of the playing field or by using thegwiof the pitch.
Depending on how the play was built up there are several veageetite a scoring
opportunity.

3.3 Basic Primitives

From the example of the previous section one gets quite a @gieal which
behaviour patterns are needed for a soccer formalisatiloving the lines of [5],
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(a) Along pass (b) A diagonal pass (c) A deep pass and a subse-

quent back pass

Figure 4: Three different ways to build up a play. Dasheddirspresent pass ways
and solid lines denote a player movement. The bold arrow teettie
field indicates the direction of play.

we distinguish betweerle (back, midfield, forward) andide(left, centre, right)
in soccer. This distinction is more or less independent ftbepattern of play
(e.g. 3-4-1-2 or 4-2-3-1). The combination of role and sielg.(centre forward)
can be interpreted aype of a (human or robotic) soccer player or pssition
(region or point) on the soccer field. In the latter case gliega certairzonecorre-
sponding to the three roles back, midfield, and forward. ddtber, this leaves us
with basically nine different positions, as illustratedHigure 5(a).

The notions player type and position can be seen as instansggcialisations
of the notion of ambstract positionor addressfor short usually associated with
its (actual) coordinates or a region on the soccer field. Atgoposition of the
ball is abstract, i.e. the parameter or goal of a test or diperaf a soccer player
(agent). A movablebjectin the context of soccer may be a player or the ball.
An object is in a currenstate which besides other data includes information such
as the current speed or the view direction. Although notieiiyl mentioned, a
model of behaviouis assigned to every object, e.g. average or maximum speed or
as a special case, a deceleration rate for the ball. Additigrevery player needs
to hold data about other agents’ states. We abstract thisebyetmworld model
All this is summarised in the class diagram in Figure 5(b).

In [5, p.ii] only few symbols are introduced that are usedtiyhout the many
diagrams in that book: players (in many cases only the teatesnnot the oppo-
nents are shown), the ball, passing, movement of the plageiving the ball, and
dribbling. Conceptually, all symbols correspondations which we abbreviate
aspass, goto, anddribble. Since all actions are drawn as arrows starting at some
player, naturally two arguments can be assumédyer andabstract position.
goto(player[LF], region[CF]) means for instance that the left forward player
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(a) Tactical regions on the field. (b) Class hierarchy for soccer
derived from [5].

Figure 5: Tactical regions and abstract position hieramésived from [5]. The
field is divided into three rows (corresponding to playees)l back B),
midfield (M), and forward ), and three lanes (sides): lefff)( centre C),
right (R). An address may be one of the nine regions or player types.

moves in front of the opponent goal.

Although in most cases this is not explicitly mentioned i, fctions require
that certain prerequisites are satisfied, in order to ba@gge. Since our approach
aims at a very abstract and universal formalisation of speerestrict ourselves,
for instance in case of a pass, to only two tests: possesshmil@nd reachability.
Each of them can be seen apradicatewith several argumentdiasBall has the
argumenplayer (the ball owner)reachable has two arguments, namely an object
and an address.

A pass e.g. presupposes reachability, i.e. it should beagteed that the ball
reaches the team-mate. Clearly, the implementation othehability test is heav-
ily dependent of the respective soccer league and its (pdlysaws. Therefore, at
this point, we only give a very general and abstract definit@bjecto can reach
an address iff o can move taz and after that the ball is not in possession of the
opponent team. This also covers the case of going to a positiere the ball will
be intercepted.

The primitive actions we consider here argoto(player, region),
pass(player, region), and dribble(player, region). Further we need the action
intercept which is a complex action built from the primitive ones. Thguanents
of the actions are@layer andregion denoting that the particular player should go
to, pass, or dribble the ball to the given position. For dégug the properties of
the world on the soccer field we need the fluerts:hable andhasBall(player)
among others. The precondition axioms for the actions are:

Poss(pass(player, region), s) = hasBall(player)
Poss(dribble(player, region), s) = hasBall(player)

Poss(goto(player, region), s) = true



For our formalisation of soccer, reachability is centra¢aRhability strongly
depends on the physical abilities of the robot. Besides theipal abilities the
reachability relation has some independent propertiegeheral, we can distin-
guish three different reachability relations:

go-reachability: a playerp not being in ball possession will reach an address
a on the field before any other playewachabley,(p, a) with prerequisite
—hasBall(p)

dribble-reachability: a playerp being in ball possession is able to dribble
towards addresswith high probability of still being in ball possession afte
wards:reachable gippie (p, a) With prerequisitehasBall(p)

pass-reachability: a playerp being in ball possession is able to pass the ball
towards addresswith high probability of a team-mate being in ball posses-
sion afterwardsreachable,,ss (b, a) with prerequisitehasBall(p)

With the Voronoi model presented in Section 2.3, we can defureeachable
relation as a connection between vertices in the Delaumaygulation. Note that
this approach is only one possibility for implementing teaaility. The practical
experiences made in robotic soccer show that this modekfsiuas a mathemati-
cal description of all three kinds of reachability.

3.4 Deriving the Specification of Soccer Tactics

For our soccer domain axiomatisation, we give successte stdoms for the
ballPos function (ball position) andiasBall fluent as examples. We assume, that
the ball position changes only if we pass the ball to a teartreraadribble with
the ball.

ballPos(do(a, s)) = b = IplayerIregion
((a = goto(player, region) A ballPos(s) = b)
Vv ((a = pass(player, region) V a = dribble(player, region)) A b = region))

A player is in possession of the ball if its position is the saas the position
of the ball. Of course, the player should be located in a Tegeea around the
ball, but for ease of presentation we leave this out. If tley@t passes the ball to
another position, the fluent value becomes false.

hasBall(player, do(a, s)) = Jregion
((a = goto(player, region) A ballPos(s) = region)
Vv (hasBall(player, s) A —=3region a = pass(player, region)))

Please note the difference between effect axioms and sacsmte axioms. In
Sect. 2.1 we introduced effect axioms to describe the eff#cictions. A successor



state axiom is defined for each fluent and defines all possisilnow the value of
this fluent is changed by any action (cf. [24]).

With these basic actions and their effects we can easilydbse examples of
building up play from Figure 3, starting with Figure 3(a) gsliog a long pass as
first action. There, back player 2 makes a long pass to for@andho then passes
back to the centre midfielder 10, who can make a pass to forivhravho cuts
in deep down-field, as written in [5, p. 29]. Four agents tlrattaam-mates are
actively involved in this manceuvre: back player= player|[B] (whose side need
not to be specified), the centre midfieldep = player[CM], and two forwards
py = player[zF] andpy1 = player[yF] on different sides, i.ex # y.

Before we are able to formalise the whole manceuvre, we hathértl about
what passing means exactly. A pass from playeto p’ requires thatp is
in ball possession and that the ball can be passeg,tae. the logical con-
junction hasBall(p) A reachable(ball,p’). Afterwardsp’ is in ball possession,
i.e. hasBall(p'). In [5, p. 27], three different types of passes are mentiombady
can be formalised by additional constraints:

1. long pass withp.role = B A p'.role = F,

2. diagonal pass with.side # p’.side, and

3. deep pass with.role < p’.role where we assume that the roles (which can

also be understood as rows in Figure 5(a)) are ordered.
With these definitions and constraints for passing, thedsat Figure 3(a) can be
described by the following program in a straightforward mem

proc build-up-play
(passp2, po); Passpo, pio)||gotopi1, r));passpio, r)
endproc
Algorithm 1: Build-up-play algorithm.

Recall that subsequent actions (sequences) are markedseviiftolon; con-
current, i.e. parallel actions are separated by the syrjjboh addition,r =
region|C'F'] denotes the region in front of the opponent goal. Since we tak
allocentric view from the diagrams in [5], we may have paitadictions of dif-
ferent agents (e.g. player 11 running in front of the oppowgeal, while player
9 or 10 initiates the pass). Clearly, this has to be turnemantimplementation for
each agent.

As another example, consider the move depicted in Figureiéhws a possible
move for a counter-attack. There, player 8 just capturedb#iefrom the oppo-
nent team and dribbles toward the goal while the forwardsy/gd9 and player 11)
revolve the opponent defence in order to get a scoring oppibytfrom both cor-
ners of the penalty area while player 10 starts a red hersimgrming to the centre.
The white circles represent opponent players. In the aaldigure [5, diagram 21]
(see Figure 3(b)), there are neither opponent players ndicated regions; we
inserted them here for illustration purposes.
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Figure 6: Extended diagram 21 from [5].
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proc counterattack’1l
intercept,;
startDribble(region[CF]);
waitFor (reachable(p11, region| LF]) V
reachable(pg, region[RF]) V
Jx.Opponent(x) A Tackles(x));
endDribble;
if reachable(p11, region[LF]) then
pass(region[LF]);
else ifreachable(pg, region| RF]) then
pass(region[RF]);
endif
endproc
Algorithm 2: Counter-attack program.

Algorithm 2 is from the point of view of player 8, that is, alttons and tests
are performed by this player. Player 8 gains the ball withraercept action. He
dribbles towards the centre (denoted fyion[CF])) until either player 11 or
player 9 is able to receive the pass or an opponent forcegemp8to do another
action (which is not specified in this example). In the speatfon above, we use
the action pairstartDribble and endDribble instead of a singlelribble action
accounting for temporal aspects of that action. Splitting dribble action into
initiation and termination is a form of implicit concurrgnsince other actions can
be performed while dribbling.

The next step in the presented sequence ig@For construct. It is used to
specify that no further actions are initiated until one of ttonditions becomes
true, i.e. players 11 or 9 are able to receive a pass in thgfrertive regions or
an opponent tackles player 8, i.e. an opponent could prgbatadrcept the ball.
Note that during the blocking of theaitFor the dribbling of player 8 continues
and sensor inputs are processed to update the relatiohable.

Finally, in the conditional we have to test which conditia@thme true to choose
the appropriate pass. Note that we do not choose an actidreicése of both
player 9 and player 11 cannot receive the pass as this wouttiebenatter of
another soccer move procedure. The counter-attack pregfanother players
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participating in this move can be specified similarly.
3.5 An Example Move on a Robot

We now specify the soccer mogoal-kick in Readylog and we show that our
qualitative world model supports the specification. We agldthree possible ways
to build up a play as discussed in [5] (see also Section 2.3).

The first way to build up play is with a long pass (Fig. 7(a)). Winediately
notice that the term long is one of the coarse, qualitatit®ne we need to estab-
lish in order to adapt human soccer theory for our autonorsouser agents. We
could also formulate this as passing the ball from a backipogio a front position
on the playing field. The second way to build up play is with agdinal pass as
depicted in Fig. 7(b). This time, the term diagonal is of ¢gasil/e nature. Diag-
onal means passing to the side being opposite to the cument-dg. 7(c) shows
the last possibility to build up play which is with a deep pédsshed line labelled
with 1) followed by a subsequent back pass (dashed line labell&dviThe term
deep is used to denote the space behind or in between a groppafent players.
The endpoint of such a pass has to be the most free positidalzdean between
or behind the group of opponents.

We now try to adapt as much of these descriptions as possjbietégrating
their most essential parts into one pattern. All three pil#gs have in common
that the ball is located in the back part on the pitch. Acawgdo a role ontology it
is a player currently having a defensive role which is aboutitiate the pattern to
build up play. We already characterised the possibility tdrey pass as bringing
the ball to the front part of the pitch. Therefore, in thise#ise agent chooses to
pass to a teammate located in the attacking zone. For thettveo possibilities
the destination of the pass is the midfield. The agent caereittake a diagonal
pass, that is the case if the target position is on the opmpsiie of the field, or
it can simply pass to a free area on the same side or in theeceftine pitch. To
illustrate our adaptation of the build up play patterns fog Middle-size league
we depicted a diagram similar to the ones in [5] in Figure .7(d)



proc build_up_play_defender,
if haveBall(ownNumbeithen
getFreeSidefffense, FreeSide);
getPassPartneiffense, FreeSide, PassPartner);
solve(

if —isKickable(ownNumber) then
interceptBall

else

if isPassReachable(ownNumber,PassPartner) then
passToownNumber,PassPartner)

endif
endif
| pickBest (bestSide,{leftSide, middleSide, rightSide}
dribbleTownNumber,middleZone,bestSide)
| kickTo(own Number,middleZone,bestSide) )
/* end of pickBest/
| interceptBall; kickTo(ownNumber, middleZone, middleSide ),
3, funcReward ) /*end solve with horizon 3/
else
interceptBall
endif

endproc
Algorithm 3: The build up play program for the defender.

Algorithm 3 shows a program in our action language Readyhgjuring the
above example. Note that this specification contains skgesditative elements
such as middleZone, leftSide, and offence as well as gtiaditaredicates such as
isPassReachable. With our qualitative world model we ale tabsimply transfer
the qualitative notions from the specification in [5]. Moveq the use of qualita-
tive terms and predicates makes the program applicable iy igeame situations.

In the first part of the procedure the agent assigns the mestdide in the
offensive zone to the variabléceSide. It further picks a team-mate in the offense
that may receive a pass. Then the agent starts deliberaitim¢he solve statement.
Using decision-theoretic planning it decides which of theians separated by
the| to take. The first possibility is to check whether the ballisk&ble. If it is
not kickable the agent needs to intercept the ball. If thes pastner which was
determined initially is reachable with a pass the agentpgesed to carry out the
pass action. The second possibiblity is to use fhiekBest statement to choose the
best argument for the subsequent action. That is to saygtre decides to call the
actionpass_to with the best value taken from the list of arguments specifigtd
the pickBest statement. This list of positions corresponds to the sebs$ibilities
to build up a play we depicted in Figure 7(d). It can choose ldrether to dribble
or to kick to the position chosen hyickBest. The last possibility available is to
intercept the ball and directly kick it towards the centréhef field. Further details



and case studies on formalisations can be found in [1, 19].

4 Discussion

In this chapter, we presented an approach towards a forraeifgation of soccer.
For the behaviour specification of our soccer robots weesldHinking if it could
be helpful to review the soccer literature in order to leaorerabout how soccer is
specified. What showed up was that, on the one hand, there ask on soccer
strategies and tactics and, on the other hand, that thesegés are not formalised
in a way which is appropriate for soccer robots.

As soccer is a structured game, a top-level ontology cantoec®d quite easily.
Also does the soccer literature mention only few basic pives like passor run.
With the appropriate preconditions for these actions omededine a basic action
theory for the soccer domain. For our soccer robot apptioaiti is possible to
define spatial relations like distance or reachability inualijative fashion. One
has to remark that our approach works for soccer playingtsodoying to adapt
the results to human soccer play in order to gain more insigihdout human soccer
strategies and tactics it becomes obvious that especiedlgatial relations have
to be adapted, too. One has to find appropriate models whilglttréhe mobility
of human soccer players and which model the possibility &y pleaders and high
Cross passes.

4.1 Related Works

The benefit of mathematics for detailed analysis and impnare of sports was
described formally before, e.g. in [25]. These approaclexentrate in many
cases on the optimisation of single tactics, as e.g. on dimchgailing in [26].
Other approaches on formalising sports exist. For exaniplg27] tactical pat-
terns for water polo are defined. Similar to our approachdoasiion primitives
are identified and tactical formations are described fogm@here is also work in
the field of automatic commentating and analysing sports.

Automated commentator systems. Specifically related to the RoboCup domain
there are three groups which developed systems for autoneatitime commen-
tary. Their systems together won the scientific award at Roip®8 [28]. An
overview on the three systems can be found in [29]. Of pdeidaterest are the
two systems Rccoand MIKE since both try to model and identify certain aspects
of soccer.

Rocco evolved from the 8ccEeR system [30] which generates natural lan-
guage descriptions of a soccer game. It works on informgtimvided by the
RoboCup soccer simulation server. Based on elementarys{lide kick or catch
and geometric data provided by the Soccer Servelg&o performs a high-level
scene analysis by an incremental event-recognition. Degtla concepts of events
represent a priori knowledge about typical occurrencessiceme. These concepts



are organised in an abstract hierarchy, grounded on sgatiah and temporal
decomposition. There exists a simple recognition autométtoeach concept.

MIKE also uses the information provided by the Soccer Serversasut.
MIKE consists of six analysis modules running concurrentlyploat propositions
of information gathered to a pool. One of the six analysis uhegimakes also use
of Voronoi diagrams. Their application enableskd to determine the defensive
areas covered by a player as well as to assess the overdlbpwgj. Players are
considered to be free if they are positioned as close aslpessia Voronoi vertex
of the diagram of the opposing team. Furthermore, trianghapes in a Voronoi
diagram indicate a tight formation since the average sh&e\@ronoi area is
hexagonal. These two observations seem to provide furtiaitative insight from
a tactical point of view.

Real-time analysis tools. In arecent work [31], Beetz et al. overview the FIPM
system, a real-time analysis tool for soccer games. Basgubsition data of the
players and the ball they interpret common soccer conckpi31] they report on
first results drawn from data from the RoboCup simulatioglea They use first-
order interval temporal logic to represent events or dinat Their model consists
of five layers comprising a motion, situation, action, anctital layer. On the
situation layer they identify concepts li&coringOpportunityWith data mining
techniques they assess the conditions for such situatiimshe action layer they
distinguish between several kind of models. The obsematiodel for example
classifies shots to belong to a dribbling or a pass, the greelimodel use decision-
tree learning to form rules for predicting the success ratg®al shots. They also
provide, for example, information about the physical dieii of players based on
the distances the player covers during a match, and alsoakgatterns of a team
can be derived. These information are especially usefiddocer coaches.

Miene et al. [32] report on successful experiments on dietgend predicting
offside positions based on data also from the simulatiogueaThey developed
an algorithm for rule-based motion interpretation. Theesuhre given as back-
ground knowledge in first-order logic. The input data aret fiesnporally seg-
mented based on thresholds an monotonicity criteria. Theségmented motion
data are mapped into qualitative classes fikemotion or slow. They use logical
representations to model game situations like a playergbigiran offside posi-
tion. They are able to detect offside positions successéultl can also predict if a
player risks to run into an offside trap. Important to notéhet they do not regard
static situations but analyse the motion data. This covepe@ally the dynamic
aspects of soccer.

Formalising teamwork and strategies. One approach for specifying teamwork
among others is theommunicative multiagent team decision problE@©OM-
MTDP) model [33]. Communication is explicit in this framerkoand uncertainty
can be expressed by probabilities. A reward function allawalysing the opti-
mality of behaviour, which could be done with model checkimgheorem prov-
ing techniques for Golog or similar specifications in our teah However, the



main focus of this paper is on the questiahat should be evaluated, and the
answer is dependent on the chosen domain. Therefore, if wetwvavaluate the
behaviour of multiagent systems for the RoboCup scendrem e need primi-
tives for describing the behaviour of robots in this domaimane here.

In a recent paper [34], the four-legged league champion tédhbots 2006 was
tested against more aggressive and more defensive ststédjie results indicate
that global team tactics should be considered in conjungtith a team s style of
play. A set of metrics was developed which may enable a futlyet soccer team
to observe, reason, and modify its global strategy to sattdhan opposing team.

McMillen and Veloso [35] present a framework for distribdit@lay-based role
assignments. The proposed framework allows to specifyrakteam play strate-
gies on a very high level. In addition, some applicabilitpditions for each strat-
egy must be given, e.g. second half of the game and the teainéng. Finally,
roles (goalkeeper, defender etc.) must be listed. In [35)aessful case study
with Aibo robots in the four-legged league is also reportéalvever, no clear for-
mal semantics of the calculus is stated which we get for figelated approaches
e.g. with state machines [36] or the situation calculus asqted in this paper.

4.2 Final Remarks

Finally, it will be interesting to see if, in the future, a foal approach to tactics
cannot only be useful for computer scientists trying to #pexsystem but also,
this work as a starting point, for sport scientists to buddnial models of their
respective sports discipline. Future work in this direetfor soccer has to con-
centrate on appropriate models for the mobility of humawygia to find a unified
theoretical model for soccer. We believe that such formaragches in general
will help sport scientists to better understand and to aetlgeir sport disciplines.

The biggest lesson we learnt is that e able to formalise soccer theory on
an abstract level. This might not be surprising, howevanesof the concepts real
soccer experts use are quite fuzzy and therefore difficdefme and implement.
One of the challenges of Computer Science in Sport is to getarehers from
sport and computer science together to find a common langdége will help
both sides to bring research further.
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