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Abstract. Service robots operating in domestic indoor environments
must be endowed with a safe collision avoidance and navigation method
that is reactive enough to avoid contacts with the furniture of the apart-
ment and humans that suddenly appear in front of the robot. Moreover,
the method should be local, i.e. should not need a predefined map of
the environment. In this paper we describe a navigation and collision
avoidance method which is all of that: safe, fast, and local. Based on a
geometric grid representation which is derived from the laser range finder
of our domestic robot, a path to the next target point is found by em-
ploying A*. The obstacles which are used in the local map of the robot
are extended depending on the speed the robot travels at. We compute
a triangular area in front of the robot which is guaranteed to be free
of obstacles. This triangle serves as the space of feasible solutions when
searching for the next drive commands. With this triangle, we are able
to decouple the path search from the search for drive commands, which
tremendously decreases the complexity. We used the proposed method
for several years in RoboCup@Home where it was a key factor to our
success in the competitions.

1 Introduction

One of the most important and most basic tasks for a mobile robot in domestic
domains is safe navigation with reliable collision avoidance. In this paper we
present our navigation and collision avoidance algorithm which we successfully
deployed over many years in the domestic robot domain. The navigation scheme
presented here was one of the key features for our success in the domestic robot
competition RoboCup@Home. Our method relies on a distance measurement
sensor from which a local map of the surrounding is constructed. In our case,
we make use of a laser range finder. In this local map, which is in fact a grid
representation, we search for a path to a target point. We employ A* for this.



The such calculated path serves as an initial solution to the navigation task.
For computing the path the robot’s kinematic constraints have not been taken
into account. This was decoupled in order to decrease the size of the search space.
We integrate it in a second step where we construct the so-called collision-free
triangle, where the path as it is calculated by A* serves as the leg of this trian-
gle. In particular, the current setting of the robot’s parameters like speed and
orientation are taken into account. By this, we explicitly take care of the robot’s
kinematic constraints. In the sequel, we prove that this triangle is obstacle-free
and can be traversed safely.

The success of our method is founded on two ideas. (1) The first one is to
represent the size of the surrounding obstacles depending on the speed of the
robot, i.e. the faster the robot drives the larger the obstacles will become, since
the robot needs more time to break in front of them. This way we can represent
the robot as a mass point. (2) The second idea lies in decoupling the search for
a path from its realization. In particular, we propose to construct a collision-free
triangle which the robot can traverse safely.

In the past, many different approaches for this fundamental problem have
been proposed. So why does this paper go beyond proposing yet another collision
avoidance approach? The answer is three-fold:

1. We believe that extending the size of the obstacles depending on the speed
of the robot is innovative and worth to be mentioned; with this the robot
drives only as fast as possible not to collide with any obstacles. In narrow
passages it reduces iteratively its speed until it can safely travel through,
while in broad areas it will try to reach its maximal speed.

2. With the collision-free triangle we have an area in the motion area of the
robot which is guaranteed to be collision-free.

3. Finally, we deployed this approach for many years in robotics competitions
and it was a key to succeed in the domestic robot competition RoboCup@Home
for the past three years.

The rest of this paper is organized as follows: In the next section we will
present some of the huge body of related articles. In Sect. 3 we introduce our
robot platform. In Sect. 4 we present how obstacles as perceived by the sensors
of the robot are integrated into its local map, and how a path is calculated. We
prove that the collision-free triangle is in fact without obstacles, and show how
this triangle bounds the kinematic parameters of the robot. Sect. 5 discusses
some implementation details and experimental results. We conclude with Sect. 6

2 Related Work

Approaches to mobile robot navigation can be categorized along several criteria.
Some approaches make use of randomized planning techniques, e.g. [1, 2], other
approaches use reactive schemes, for instance [3–5], and/or make use of a nav-
igation function to follow a path like [6] or plan directly in the velocity space
like [7–10]. Yet other approaches employ a search, some in physical space, some
in configuration space.



In their early approach, Borenstein and Koren [7] proposed to use vector
field histograms. The target point exerts an attractive force to the robot while
obstacles impose repulsive forces. The trajectory of the robot is then formed by
the sum of both these forces. They propose a special wall-following mode to avoid
getting stuck in local minima which could otherwise cause oscillating behavior.
The method was tested with robots equipped with sonar sensors driving with
an average speed of 0.58 m/s.

In [3], Fox et al. proposed the dynamic window approach. It is directly de-
rived from the motion equations. In the velocity space circular collision-free tra-
jectories are searched. To handle the state space they define a dynamic window
around the robot to only consider those velocities that the robot can reach in the
next time interval. Finally, a trajectory is found by maximizing over the minimal
target heading, maximal clearance around the robot, and maximal speed. The
method was tested on an RWI B21 robot with a maximum speed of 0.95 m/s.
A similar approach except for the dynamic window was proposed in [11].

Seraji and Howard describe a behavior-based navigation scheme in [12]. They
distinguish between different terrain types such as roughness, slope, and discon-
tinuity. A fuzzy controller selects between traverse-terrain, avoid-obstacles, and
seek-goal behaviors. While their method aims at outdoor navigation, it is an
example for a local reactive navigation scheme. Another reactive approach is
presented in [13]. The difference to our work is that we use an optimal path as
an initial solution to avoid nearby obstacles.

Besides range sensors, imaging sensors are commonly used to navigate a mo-
bile robot. In [14] an approach to build an occupancy map from a stereo camera
on an RWI B14 robot is presented. The map is used to navigate through previ-
ously unknown environments. We want to note that our method is different in
the sense that we here present a reactive local method while the focus of [14]
is on vision-based exploration. A large number other papers deals with naviga-
tion approaches using several sensors. Among those, the fusion of imaging and
proximity sensors (cameras and LRFs) is popular, see for example [15–17].

Koenig and Likhachev [18] present a search heuristic called Lifelong Planning
A*. They propose an incremental search heuristic where only the relevant parts
of a path are recalculated. While Lifelong Planning A* is an interesting extension
to the basic A* we use in this paper, we here focus on the obstacle representation
and the decoupling of path and velocity planning to decrease the dimensionality
of the search problem.

The most related research to our approach is the method proposed by Stach-
niss and Burgard [10]. They use a laser range finder as sensor and employ A*

to find a shortest trajectory to a given target. The state space used here is a
five-dimensional pose-velocity space consisting of the pose x, y, θ and the trans-
lational and rotational velocities υ, ω. At first, a trajectory to the target is calcu-
lated using A* in the 〈x, y〉-space. This trajectory serves as the starting point for
the search in the pose-velocity space. With a value iteration approach a 70 cm
broad channel around the calculated trajectory is calculated which restricts the
state space for the five dimensional search. Stachniss and Burgard tested their
approach on a Pioneer I and an RWI B21 both having a maximum speed below
1 m/s. By restricting the search for velocities to the collision-free triangle which



(a) Robot (b) Sensor data

Fig. 1. The robot “Caesar” and its sensor data. The four blind regions are due to the
rods supporting the platforms above the laser range finder.

is known to be obstacle-free, we are able to avoid the search in the five dimen-
sional pose-velocity space which leads to a much more reactive navigation and
collision avoidance scheme. A similar method applied to holonomic small-size
league robots in the robotic soccer domain can be found in [19].

3 Service Robot Platform

Our hardware platform has a size of 40 cm × 40 cm × 160 cm. It is driven by
a differential drive, the motors have a total power of 2.4 kW and are originally
developed for electric wheel chairs. With those motors the robot reaches a top
speed of 3 m/s and a maximal rotational velocity of 1000◦/s at a total weight
of approximately 90 kg. On-board we have two Pentium III PCs at 933 MHz
running Linux. Only one of these PCs is used for the navigation and collision
avoidance approach presented in this paper. A 360◦ laser range finder (LRF)
with a resolution of 1 degree provides new distance readings for each direction
at a frequency of 10 Hz. Fig. 1(a) shows our robot.

We assume accelerated motion with our approach. Thus, the connection be-
tween pose, velocity and acceleration is given by x(t) = 1

2 · ẍ(t) · t2 + ẋ(t) · t+x0,
ẋ(t) = ẍ(t) · t+v0, and ẍ(t) = const . As usual, ẍ(t) refers to acceleration, ẋ(t) to
the velocity, and x(t) to the displacement at any given time t. In the algorithm
we present in the next section, we assume that at each time instance the robot



is accelerated only in the first time instance and from there on is driving with
constant velocity till the next acceleration command is settled. We need this re-
lation because, for efficiency reasons, we decouple the search in the pose-velocity
space into a pose space and a velocity space in the following.

4 The Navigation Algorithm

The task of the navigation algorithm is to steer the robot on a collision-free path
from its current location to a given target point. The algorithm we present does
not rely on a global map as many other algorithms do but on a local map of its
environment. The dimension of the local map corresponds to the area covered by
the current reading from the LRF. It is updated every time new laser-readings
are received. Although, in our implementation, we integrate new sensor readings
into the previous local map if possible, we here assume that the local map is
set up from scratch every cycle. In juxtaposition to approaches which rely on a
global map a local map has the advantage that it allows to easily account for
dynamic obstacles. Moreover, using a local map makes the successful execution
of a planned path independent from the localization of the robot. In the following
we will give a rough overview of our navigation algorithm and discuss the key
aspects in greater detail thereafter.

Input: ∆x, ∆y the target point in relative coordinates
while not reached target do

d1, . . . , dn ← getLaserReadings() ;
vcur

t , vcur

r ← getCurrentVelocities() ;
map ← extendObstacles(d1, . . . , dn, vcur

t , vcur

r ) ;
path ← findInitialPath(map) ;
if path.isEmpty() then

sendMotorCommands(0, 0); break;
end

vt, vr ← findVelocities(path, map) ;
if no vt, vr then

sendMotorCommands(0, 0);
break;

end

sendMotorCommands(vt, vr) ;
∆x, ∆y ← updateTarget(vt, vr) ;

end

sendMotorCommands(0, 0) ;

Algorithm 1: The navigation algorithm in pseudo-code.

If the robot is in close proximity to the given target, i.e., the target is reached,
it stops. Otherwise the current distance readings from the LRF and the current
translational and rotational velocities are obtained. This data is then used to
build a (local) map. For this we employ a technique we refer to as dynamic



obstacle extension (cf. Sect 4.1) which yields a (local) grid-based map of the
robot’s environment. The cells of the grid map may either be occupied or free.

With this representation of the surrounding of the robot we search for an
initial path to the target, first. In a second step, we search for an approximation
of the initial path which takes into account the kinematic constraints of the robot.
In both steps we employ the A* search algorithm. Splitting up the path-planning
problem into two independent search problems reduces the original problem of
dimensionality four to two search problems over two-dimensional search spaces.
Namely, finding a path in the xy-plane and appropriate velocities vt, vr. This
is only possible since the search for an appropriate approximation of the initial
path is restricted to a certain area which is guaranteed to be free of obstacles.
We refer to this area as the collision-free triangle. More details on this are given
in Sect. 4.2.

4.1 Dynamic Obstacle Extension

A technique often referred to as obstacle growing [20] extends the obstacles by the
dimensions of the robot. This alleviates the problem of collision detection in the
path-planning problem since the robot can now be treated as a mass point. We
leapfrog on this idea and additionally extend the obstacles in dependence on their
respective imminence of collision which takes into account the current speed of
the robot as well as the position of the obstacle relative to the current trajectory
of the robot. The intuition behind this is to mark potentially dangerous areas
as occupied in the local map and thereby force the search to not consider paths
leading through those areas.

The most threatening obstacle for the next step is the obstacle lying on the
trajectory defined by the current and the projected position of the robot in the
next step. We assume to recompute a new path every iteration and, consequently,
it is not necessary to project further into the future then the next step. The
next-step trajectory is computed from the current translational velocity vr, the
current rotational velocity vr and the time between two iterations ∆t:

vx =
x(t + 1) − x(t)

∆t
vy =

y(t + 1) − y(t)

∆t
α = tan

vy

vx

For each detected obstacle we place an ellipse centered at the reflection point
of the laser beam in the local map and align the axes such that the semi-major
axis is parallel to the laser beam. The radius for the semi-major axis r1 and the
radius for the semi-minor axis r2 are computed as:

r1 = l + lsec + | cos(θ − α)| · d · n

r2 = l + lsec

where l is the radial extension of the robot3, lsec is an additional security dis-
tance, θ is the angle of the laser beam that hits the obstacle and d is the euclidean

3 The formula could be further detailed to account for a rectangular shape of the
robot, but this is omitted here for clarity reasons.
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θ1 = 20◦ θ2 = 0◦

θ3 = −20◦
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d2
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Fig. 2. In this illustrating example a wall is located in front of the robot. The extension
of the obstacles is shown for the obstacles detected at 20°, 0°, -20°, and -40°. The
translational velocities are 1 m/s, 2 m/s, and 3 m/s; the rotational velocity remains
fixed at 1 rad/s. For illustrating purposes we chose ∆t = 0.25 s and n = 1.

distance between the current position and the position projected for the next
step

d =
√

(vx · ∆t)2 + (vy · ∆t)2

Then, the obstacles are extended in such a way that the robot will stay out of
the “dangerous area” for the next n steps.

By means of extending the obstacles in such a way we capture the current
obstacle configuration as well as the current configuration of the robot (in terms
of translational and rotational velocity) in the local map. Fig. 2 illustrates the
extension of the obstacles for different configurations of the robot: the rotational
velocity remains fixed whereas the translational velocity is altered between 1 m/s
and 3 m/s.

4.2 The Collision-free Triangle

As we pointed out in the introduction, within the search for an initial path we
ignore the kinematic constraints of the robots as well as its current configuration
in terms of velocity and orientation. With this, we are in good company with
several other search-based methods like [10]. However, for successfully realizing
a path on a real robot, the kinematic constraints need to be taken into account,
of course. In our algorithm, we do so by performing an A* search on the possible
accelerations in translation and rotation making use of the standard motion
equations for accelerated motion. The kinematic constraints of the robot are
only one part of the velocity planning problem of the robot. The other part
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Fig. 3. Construction of the Collision-free Triangle

is to take the robot’s current state into account, i.e. its current translational
and rotational velocities. In the following, we therefor present the collision-free
triangle. We prove that, by construction, each grid cell inside this triangle is free
of obstacles. Poses inside this triangle are thus safe and therefore it can be used
to restrict the search for the optimal trajectory the robot should follow.

Definition 1 (Collision-Free Triangle). The robot is located in the origin of
a Cartesian coordinate system, such that R = (0, 0) is the position of the robot
facing the positive x-axis. Let Ck = (xk, 0) be a grid cell in front of the first
obstacle along the x axis. In case there is no obstacle along the x axis, the last
cell within the perception range of the robot is taken.

Let p = 〈(0, 0), (x1, y1), . . . , (xg−1, yg−1), (xg, yg)〉 be the path to the target
point G. The path is given as a sequence of grid cells. For each path point Pi =
(xi, yi), 1 ≤ i ≤ g we ray-trace to the point Ci = (xi, 0). A path point (xi, yi) is
called safe iff the ray Pi Ci does not hit any obstacle, otherwise it is unsafe. The
collision-free triangle is now given by the points R, Pw, and Cw with w being the
index of the last safe path point.

Fig. 3 depicts the construction of the collision-free triangle as described in
the definition. Note that the x axis always points into the direction of the robot’s
orientation as the map is given by a Cartesian coordinate system with the robot
in its origin. Hence, the point C denotes the last free cell before the robot would
collide with an obstacle if, from now on, it would drive only with translational
velocities. Now, for each path point it is checked if the orthogonal projection of
a path point onto the segment |RC| will hit an obstacle. The robot’s position R,
the last safe path point Pw and the point Cw, the projection point of Pw onto
|RC|, yields the corner points of the triangle.

Fig. 3(c) illustrates the situation in which the robot is turning away from
the path. In that case, we span an additional triangle by projecting the robot’s
position according to its current velocity for the next step (cf. point D). We
put a straight line from the robot’s position through D until we hit an obstacle
(cf. point Di). Then we ray-trace analogous to the original triangle to ensure the
additional triangle is also obstacle-free.

Theorem 1. Each cell inside the triangle is obstacle-free.



Proof. Suppose, Pi is the next path point to be considered in the construction of
the collision-free triangle as described in the definition. Hence, the triangle given
by △R,Pi−1, Ci−1 is collision-free. Now we ray-trace from Pi orthogonal to the
segment given by |RC|. If the ray hits an obstacle, the collision-free triangle is
given by △R,Pi−1, Ci−1, otherwise we conclude that the △R,Pi, Ci is collision-
free. �

Pw is the next point for the robot to reach (safely). Pw closes in on G and
the robot will thus eventually reach the target point.

4.3 Computing the Drive Commands

Lastly, a suitable sequence of velocities to reach the intermediate target point
Pw needs to be determined. Again we employ A* search to find such a sequence.
We restrict the search space by only considering velocity sequences which steer
the robot to locations within the collision-free triangle—as soon as the robot
leaves the collision-free triangle the search is aborted.

The initial state in the search space is 〈0, 0, 0, vt, vr〉, i.e., the robot is located
at the origin of the coordinate system, its orientation is 0°, and the current
translational and rotational velocities are vt and vr, respectively. Possible suc-
cessor states in each step are 〈x′, y′, θ′, v′

t, v
′

r〉 where v′

t = vt + ct · amax
t · ∆t with

ct ∈ {−1,− 2
3 , . . . , 1} and amax

t being the maximal translational acceleration.
Analogously for v′

r. (x′, y′, θ′) is the projected pose at time t + ∆t when sending
the drive commands 〈v′

t, v
′

r〉 to the motor controller and the robot is located
at 〈x, y, θ〉 at time t. The change in position and orientation is computed ac-
cording to the standard equations for differentially driven robots The heuristic
value for each state is computed as the straight-line distance to the intermediate
target; the costs are uniform. A goal state is reached if the distance between the
projected position and the intermediate goal is smaller than a certain threshold.

The velocities returned by the function “findVelocities(·)” in Alg. 1 are the
first translational and rotational velocities in the sequence of velocities that was
determined by the search.

5 Implementation and Evaluation

Occupancy Grid. Although the LRF has a far longer range we limited the local
map to a size of 6 × 6 m2 for practical reasons. The local map is subdivided
into grid-cells with a size of 5× 5 cm2. Consequently, the complete local map is
made up of 14400 cells. Recomputing the ellipses that result from extending the
obstacles and their respective rasterizations with every update is quite costly.
Therefore, we pre-computed a library of rasterized ellipses of various sizes and
at various angles. For a given obstacle we look-up the ellipse matching the cur-
rent velocities of the robot and the angle at which the obstacle is detected and
integrate it into the local map.
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Fig. 4. Example traces

Searching for the Path. In order to avoid that the changed perception of the
environment which is due to the movement of the robot leads to an oscillating
behavior we accumulate the sensor readings for a short duration, i.e., we do not
only consider the current distance readings but also a number of readings from
the past. Each obstacle in this accumulated sensor reading is then extended
in the same way described in Sect. 4.1. Further, for reasons of efficiency, we
try to avoid re-computing a path and proceed with the remainder of the path
computed previously, instead. Of course, this is only possible if the “old” path
is still a valid path. This means we have to check whether the robot strayed too
far from the projected path and whether the collision-free triangle computed for
the “old” path is still free of any obstacles. Thus, we still maintain a high degree
of reactivity. The implementation of the A* search algorithm calculates a path
of a length up to 300 grid cells (i.e. a path length of 15 m) in less than 10 ms
on the Pentium-III 933 machine on the robot. Given that the frequency of the
laser range finder is 10 Hz and the navigation module runs at 20 Hz (not to lose
any update from the laser range finder) there are about 40 ms left for the other
steps of the algorithm.

Evaluation. The method proposed in this paper was extensively tested during
several RoboCup tournaments as well as with indoor demonstrations where the
robot had to safely navigate through crowds of people. Fig. 4 shows the path
visualization of a run of a robot in our department hallway. The red dot rep-
resents the robot, the green line represents the planned path, the black objects
are the walls of the hallway. The robot should navigate from the hallway into a
room. Note that the path is calculated in such a way that the shortest possible
connection between robot and target is chosen. The second picture in the series
shows the robot a few moments later. The calculation of the drive commands
and the realization of these commands on the robot have the effect that the
robot slightly deviates from the path. We remark that the position of the robot
is still inside the collision-free triangle (which is not shown in the figure). In the
fourth picture the robot entered the room.

We also tested our navigation algorithm on our B21 robot Carl as shown
in Fig. 5. From the performance point of view we encountered no problems
with the algorithm. We could observe that Carl reached higher velocities than
with the Dynamic Window (DW) approach [3] which is part of the original
control software of Carl. The DW approach has inherently problems with narrow
doorways as well as with relatively sharp turns.



(a) B21 with DWA
(vmax = 0.45 cm/s)

(b) B21 with A*

(vmax = 0.45 cm/s)
(c) B21 with A*

(vmax = 0.95cm/s)
(d) Caesar with A*

(vmax = 3 m/s)

Fig. 5. Comparison of the DWA with our method

6 Conclusion

In this paper we presented a navigation and collision avoidance method for
service robots operating in domestic indoor environments. Particularly in these
environments, a domestic robot must navigate carefully and be able to drive
around obstacles that suddenly cross its path as it is interacting with humans.
The core of our method is a grid representation which is generated from the
sensory input of a laser range finder. Depending on the speed of the robot and
several other security parameters, the detected obstacles are extended in the grid
representation. This is done to speed up the collision detection when searching
for a path to the target. For finding a path, we employ A* on the grid. Next, we
construct a so-called collision-free triangle from the obstacle configuration, the
current parameters of the robot (its actual speed) and the desired path. For each
grid cell inside this triangle we can guarantee that it is collision-free. In a second
step, we use this triangle to calculate the drive parameter for the next time step.
Again, we employ A* for this task, this time we search for accelerations which
keep the robot inside the triangle. The collision-free triangle relates the search
for a path with the search for drive commands and allows to decouple both.
Positions inside the triangle are safe and therefore feasible. This decreases the
complexity of the search problem tremendously. This method allows for fast and
adaptive navigation and was deployed for RoboCup@Home competitions over
several years without ever colliding with the furniture or humans. For example,
we were able to solve the Lost&Found task in 25 seconds while driving through
a large part of the apartment looking for an object.
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